Search Results

Now showing 1 - 2 of 2
  • Item
    Projections of global warming-induced impacts on winter storm losses in the German private household sector
    (Dordrecht [u.a.] : Springer, 2013) Held, H.; Gerstengarbe, F.-W.; Pardowitz, T.; Pinto, J.G.; Ulbrich, U.; Born, K.; Donat, M.G.; Karremann, M.K.; Leckebusch, G.C.; Ludwig, P.; Nissen, K.M.; Österle, H.; Prahl, B.F.; Werner, P.C.; Befort, D.J.; Burghoff, O.
    We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971-2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6-35 % for 2011-2040, of 20-30 % for 2041-2070, and of 40-55 % for 2071-2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.
  • Item
    Forced versus coupled dynamics in Earth system modelling and prediction
    (Göttingen : Copernicus GmbH, 2005) Knopf, B.; Held, H.; Schellnhuber, H.J.
    We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation), this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i) a low-dimensional coupled atmosphere-ocean simulator, and (ii) a replica-like simulator embracing corresponding components. Whereas in general the forced version (ii) is able to mimic its fully coupled counterpart (i), we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also find it to be governed by a scaling law that allows us to estimate the probability of artificial predictive skill. In addition to artificial predictability we observe artificial bistability for the forced version, which has not been reported so far. The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted.