Search Results

Now showing 1 - 2 of 2
  • Item
    Wafer-scale nanofabrication of telecom single-photon emitters in silicon
    ([London] : Nature Publishing Group UK, 2022) Hollenbach, Michael; Klingner, Nico; Jagtap, Nagesh S.; Bischoff, Lothar; Fowley, Ciarán; Kentsch, Ulrich; Hlawacek, Gregor; Erbe, Artur; Abrosimov, Nikolay V.; Helm, Manfred; Berencén, Yonder; Astakhov, Georgy V.
    A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm.
  • Item
    On Curie temperature of B20-MnSi films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Li, Zichao; Yuan, Ye; Begeza, Viktor; Rebohle, Lars; Helm, Manfred; Nielsch, Kornelius; Prucnal, Slawomir; Zhou, Shengqiang
    B20-type MnSi is the prototype magnetic skyrmion material. Thin films of MnSi show a higher Curie temperature than their bulk counterpart. However, it is not yet clear what mechanism leads to the increase of the Curie temperature. In this work, we grow MnSi films on Si(100) and Si(111) substrates with a broad variation in their structures. By controlling the Mn thickness and annealing parameters, the pure MnSi phase of polycrystalline and textured nature as well as the mixed phase of MnSi and MnSi1.7 are obtained. Surprisingly, all these MnSi films show an increased Curie temperature of up to around 43 K. The Curie temperature is likely independent of the structural parameters within our accessibility including the film thickness above a threshold, strain, cell volume and the mixture with MnSi1.7. However, a pronounced phonon softening is observed for all samples, which can tentatively be attributed to slight Mn excess from stoichiometry, leading to the increased Curie temperature.