Search Results

Now showing 1 - 2 of 2
  • Item
    Marine wild-capture fisheries after nuclear war
    (2020) Scherrer, Kim J.N.; Harrison, Cheryl S.; Heneghan, Ryan F.; Galbraith, Eric; Bardeen, Charles G.; Coupe, Joshua; Jägermeyr, Jonas; Lovenduski, Nicole S.; Luna, August; Robock, Alan; Stevens, Jessica; Stevenson, Samantha; Toon, Owen B.; Xia, Lili
    Nuclear war, beyond its devastating direct impacts, is expected to cause global climatic perturbations through injections of soot into the upper atmosphere. Reduced temperature and sunlight could drive unprecedented reductions in agricultural production, endangering global food security. However, the effects of nuclear war on marine wild-capture fisheries, which significantly contribute to the global animal protein and micronutrient supply, remain unexplored. We simulate the climatic effects of six war scenarios on fish biomass and catch globally, using a state-of-the-art Earth system model and global process-based fisheries model. We also simulate how either rapidly increased fish demand (driven by food shortages) or decreased ability to fish (due to infrastructure disruptions), would affect global catches, and test the benefits of strong prewar fisheries management. We find a decade-long negative climatic impact that intensifies with soot emissions, with global biomass and catch falling by up to 18 ± 3% and 29 ± 7% after a US-Russia war under business-as-usual fishing-similar in magnitude to the end-of-century declines under unmitigated global warming. When war occurs in an overfished state, increasing demand increases short-term (1 to 2 y) catch by at most ∼30% followed by precipitous declines of up to ∼70%, thus offsetting only a minor fraction of agricultural losses. However, effective prewar management that rebuilds fish biomass could ensure a short-term catch buffer large enough to replace ∼43 ± 35% of today's global animal protein production. This buffering function in the event of a global food emergency adds to the many previously known economic and ecological benefits of effective and precautionary fisheries management.
  • Item
    Disentangling diverse responses to climate change among global marine ecosystem models
    (Amsterdam [u.a.] : Elsevier Science, 2021) Heneghan, Ryan F.; Galbraith, Eric; Blanchard, Julia L.; Harrison, Cheryl; Barrier, Nicolas; Bulman, Catherine; Cheung, William; Coll, Marta; Eddy, Tyler D.; Erauskin-Extramiana, Maite; Everett, Jason D.; Fernandes-Salvador, Jose A.; Gascuel, Didier; Guiet, Jerome; Maury, Olivier; Palacios-Abrantes, Juliano; Petrik, Colleen M.; du Pontavice, Hubert; Richardson, Anthony J.; Steenbeek, Jeroen; Tai, Travis C.; Volkholz, Jan; Woodworth-Jefcoats, Phoebe A.; Tittensor, Derek P.
    Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts.