Search Results

Now showing 1 - 3 of 3
  • Item
    Microfluidic chamber design for controlled droplet expansion and coalescence
    (Basel : MDPI, 2020) Kielpinski, Mark; Walther, Oliver; Cao, Jialan; Henkel, Thomas; Köhler, J. Michael; Groß, G. Alexander
    The defined formation and expansion of droplets are essential operations for droplet-based screening assays. The volumetric expansion of droplets causes a dilution of the ingredients. Dilution is required for the generation of concentration graduation which is mandatory for many different assay protocols. Here, we describe the design of a microfluidic operation unit based on a bypassed chamber and its operation modes. The different operation modes enable the defined formation of sub-L droplets on the one hand and the expansion of low nL to sub-L droplets by controlled coalescence on the other. In this way the chamber acts as fluidic interface between two fluidic network parts dimensioned for different droplet volumes. Hence, channel confined droplets of about 30-40 nL from the first network part were expanded to cannel confined droplets of about 500 to about 2500 nL in the second network part. Four different operation modes were realized: (a) flow rate independent droplet formation in a self-controlled way caused by the bypassed chamber design, (b) single droplet expansion mode, (c) multiple droplet expansion mode, and (d) multiple droplet coalescence mode. The last mode was used for the automated coalescence of 12 droplets of about 40 nL volume to produce a highly ordered output sequence with individual droplet volumes of about 500 nL volume. The experimental investigation confirmed a high tolerance of the developed chamber against the variation of key parameters of the dispersed-phase like salt content, pH value and fluid viscosity. The presented fluidic chamber provides a solution for the problem of bridging different droplet volumes in a fluidic network. © 2020 by the authors.
  • Item
    UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection
    (Basel : MDPI, 2018) Nissen, Mona; Doherty, Brenda; Hamperl, J.; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.
    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.
  • Item
    Application of High-Throughput Screening Raman Spectroscopy (HTS-RS) for Label-Free Identification and Molecular Characterization of Pollen
    (Basel : MDPI, 2019) Mondol, Abdullah S.; Patel, Milind D.; Rüger, Jan; Stiebing, Clara; Kleiber, Andreas; Henkel, Thomas; Popp, Jürgen; Schie, Iwan W.
    Pollen studies play a critical role in various fields of science. In the last couple of decades, replacement of manual identification of pollen by image-based methods using pollen morphological features was a great leap forward, but challenges for pollen with similar morphology remain, and additional approaches are required. Spectroscopy approaches for identification of pollen, such as Raman spectroscopy has potential benefits over traditional methods, due to the investigation of the intrinsic molecular composition of a sample. However, current Raman-based characterization of pollen is complex and time-consuming, resulting in low throughput and limiting the statistical significance of the acquired data. Previously demonstrated high-throughput screening Raman spectroscopy (HTS-RS) eliminates the complexity as well as human interaction by incorporation full automation of the data acquisition process. Here, we present a customization of HTS-RS for pollen identification, enabling sampling of a large number of pollen in comparison to other state-of-the-art Raman pollen investigations. We show that using Raman spectra we are able to provide a preliminary estimation of pollen types based on growth habits using hierarchical cluster analysis (HCA) as well as good taxonomy of 37 different Pollen using principal component analysis-support vector machine (PCA-SVM) with good accuracy even for the pollen specimens sharing similar morphological features. Our results suggest that HTS-RS platform meets the demands for automated pollen detection making it an alternative method for research concerning pollen.