Search Results

Now showing 1 - 8 of 8
  • Item
    Microfluidic chamber design for controlled droplet expansion and coalescence
    (Basel : MDPI, 2020) Kielpinski, Mark; Walther, Oliver; Cao, Jialan; Henkel, Thomas; Köhler, J. Michael; Groß, G. Alexander
    The defined formation and expansion of droplets are essential operations for droplet-based screening assays. The volumetric expansion of droplets causes a dilution of the ingredients. Dilution is required for the generation of concentration graduation which is mandatory for many different assay protocols. Here, we describe the design of a microfluidic operation unit based on a bypassed chamber and its operation modes. The different operation modes enable the defined formation of sub-L droplets on the one hand and the expansion of low nL to sub-L droplets by controlled coalescence on the other. In this way the chamber acts as fluidic interface between two fluidic network parts dimensioned for different droplet volumes. Hence, channel confined droplets of about 30-40 nL from the first network part were expanded to cannel confined droplets of about 500 to about 2500 nL in the second network part. Four different operation modes were realized: (a) flow rate independent droplet formation in a self-controlled way caused by the bypassed chamber design, (b) single droplet expansion mode, (c) multiple droplet expansion mode, and (d) multiple droplet coalescence mode. The last mode was used for the automated coalescence of 12 droplets of about 40 nL volume to produce a highly ordered output sequence with individual droplet volumes of about 500 nL volume. The experimental investigation confirmed a high tolerance of the developed chamber against the variation of key parameters of the dispersed-phase like salt content, pH value and fluid viscosity. The presented fluidic chamber provides a solution for the problem of bridging different droplet volumes in a fluidic network. © 2020 by the authors.
  • Item
    3-Step flow focusing enables multidirectional imaging of bioparticles for imaging flow cytometry
    (Cambridge : RSC, 2020) Kleiber, Andreas; Ramoji, Anuradha; Mayer, Günter; Neugebauer, Ute; Popp, Jürgen; Henkel, Thomas
    Multidirectional imaging flow cytometry (mIFC) extends conventional imaging flow cytometry (IFC) for the image-based measurement of 3D-geometrical features of particles. The innovative core is a flow rotation unit in which a vertical sample lamella is incrementally rotated by 90 degrees into a horizontal lamella. The required multidirectional views are generated by guiding all particles at a controllable shear flow position of the parabolic velocity profile of the capillary slit detection chamber. All particles pass the detection chamber in a two-dimensional sheet under controlled rotation while each particle is imaged multiple times. This generates new options for automated particle analysis. In an experimental application, we used our system for the accurate classification of 15 species of pollen based on 3D-morphological information. We demonstrate how the combination of multi directional imaging with advanced machine learning algorithms can improve the accuracy of automated bio-particle classification. As an additional benefit, we significantly decrease the number of false positives in the classification of foreign particles,i.e.those elements which do not belong to one of the trained classes by the 3D-extension of the classification algorithm. © The Royal Society of Chemistry 2020.
  • Item
    Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell
    (Amsterdam [u.a.] : Elsevier, 2015) Thiele, Matthias; Götz, Isabell; Trautmann, Steffen; Müller, Robert; Csáki, Andrea; Henkel, Thomas; Fritzsche, Wolfgang
    Metal nanoparticles showing the effect of localized surface plasmon resonance (LSPR), a collective oscillation of the conduction electrons upon interaction with light, represent an interesting tool for bioanalytics. This resonance is influenced by changes in the environment, and can be therefore used for the detection of molecular layers. The sensitivity, this means the extent of wavelength resonance shift per change in refractive index in the environment, represents an important performance parameter. It is higher for silver compared to gold particles, and is also increased for anisotropic particles. So silver triangles show a high potential for highly sensitive plasmonic nanoparticles. However, the stability under ambient conditions is rather poor. The paper demonstrates the passivation of silver triangles by silica coating using a wet-chemical approach. It compares the sensitivity for particles with and without passivation, and visualizes the passivation effect in a high resolution, single particle TEM study.
  • Item
    Three step flow focusing enables image-based discrimination and sorting of late stage 1 Haematococcus pluvialis cells
    (San Francisco, Ca. : PLOS, 2021) Kraus, Daniel; Kleiber, Andreas; Ehrhardt, Enrico; Leifheit, Matthias; Horbert, Peter; Urban, Matthias; Gleichmann, Nils; Mayer, Guenter; Popp, Juergen; Henkel, Thomas
    Label-free and gentle separation of cell stages with desired target properties from mixed stage populations are a major research task in modern biotechnological cultivation process and optimization of micro algae. The reported microfluidic sorter system (MSS) allows the subsequent investigation of separated subpopulations. The implementation of a viability preserving MSS is shown for separation of late stage 1 Haematococcus pluvialis (HP) cells form a mixed stage population. The MSS combines a three-step flow focusing unit for aligning the cells in single file transportation mode at the center of the microfluidic channel with a pure hydrodynamic sorter structure for cell sorting. Lateral displacement of the cells into one of the two outlet channels is generated by piezo-actuated pump chambers. In-line decision making for sorting is based on a user-definable set of image features and properties. The reported MSS significantly increased the purity of target cells in the sorted population (94%) in comparison to the initial mixed stage population (19%).
  • Item
    UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection
    (Basel : MDPI, 2018) Nissen, Mona; Doherty, Brenda; Hamperl, J.; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.
    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.
  • Item
    Chip-based duplex real-time PCR for water quality monitoring concerning Legionella pneumophila and Legionella spp.
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Reuter, Cornelia; Hentschel, Stefanie; Breitenstein, Antje; Heinrich, Eileen; Aehlig, Oliver; Henkel, Thomas; Csáki, Andrea; Fritzsche, Wolfgang
    Based on biomolecular methods, rapid and selective identification of human pathogenic water organisms becomes an important issue. Legionella spp., are pathogenic water bacteria with worldwide significance. Prevalent detection methods for these microorganisms are time and/or cost intensive. We describe a detection setup and relating DNA assay. A miniaturized real-time polymerase chain reaction (real-time PCR) for direct on-line discrimination of Legionella pneumophila and Legionella spp. was established and integrated into a real-time PCR-chip-system. The PCR-chip device combines a temperature controlling unit and a fluorescence intensity measurement. It was designed to achieve rapid amplification, using an approach of real-time fluorescence read out with the intercalating dye EvaGreen® and melting curve analysis, without requiring multiple probes. The presented results exhibit reproducibility and good sensitivity, showing that the setup is suitable for robust, rapid and cost-efficient detection and monitoring of a variety of Legionella spp.in urban water samples.
  • Item
    Application of High-Throughput Screening Raman Spectroscopy (HTS-RS) for Label-Free Identification and Molecular Characterization of Pollen
    (Basel : MDPI, 2019) Mondol, Abdullah S.; Patel, Milind D.; Rüger, Jan; Stiebing, Clara; Kleiber, Andreas; Henkel, Thomas; Popp, Jürgen; Schie, Iwan W.
    Pollen studies play a critical role in various fields of science. In the last couple of decades, replacement of manual identification of pollen by image-based methods using pollen morphological features was a great leap forward, but challenges for pollen with similar morphology remain, and additional approaches are required. Spectroscopy approaches for identification of pollen, such as Raman spectroscopy has potential benefits over traditional methods, due to the investigation of the intrinsic molecular composition of a sample. However, current Raman-based characterization of pollen is complex and time-consuming, resulting in low throughput and limiting the statistical significance of the acquired data. Previously demonstrated high-throughput screening Raman spectroscopy (HTS-RS) eliminates the complexity as well as human interaction by incorporation full automation of the data acquisition process. Here, we present a customization of HTS-RS for pollen identification, enabling sampling of a large number of pollen in comparison to other state-of-the-art Raman pollen investigations. We show that using Raman spectra we are able to provide a preliminary estimation of pollen types based on growth habits using hierarchical cluster analysis (HCA) as well as good taxonomy of 37 different Pollen using principal component analysis-support vector machine (PCA-SVM) with good accuracy even for the pollen specimens sharing similar morphological features. Our results suggest that HTS-RS platform meets the demands for automated pollen detection making it an alternative method for research concerning pollen.
  • Item
    Microfluidic Network Simulations Enable On-Demand Prediction of Control Parameters for Operating Lab-on-a-Chip-Devices
    (Basel : MDPI AG, 2021) Böke, Julia Sophie; Kraus, Daniel; Henkel, Thomas
    Reliable operation of lab-on-a-chip systems depends on user-friendly, precise, and predictable fluid management tailored to particular sub-tasks of the microfluidic process protocol and their required sample fluids. Pressure-driven flow control, where the sample fluids are delivered to the chip from pressurized feed vessels, simplifies the fluid management even for multiple fluids. The achieved flow rates depend on the pressure settings, fluid properties, and pressure-throughput characteristics of the complete microfluidic system composed of the chip and the interconnecting tubing. The prediction of the required pressure settings for achieving given flow rates simplifies the control tasks and enables opportunities for automation. In our work, we utilize a fast-running, Kirchhoff-based microfluidic network simulation that solves the complete microfluidic system for in-line prediction of the required pressure settings within less than 200 ms. The appropriateness of and benefits from this approach are demonstrated as exemplary for creating multi-component laminar co-flow and the creation of droplets with variable composition. Image-based methods were combined with chemometric approaches for the readout and correlation of the created multi-component flow patterns with the predictions obtained from the solver.