Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Size-resolved and bulk activation properties of aerosols in the North China Plain

2011, Deng, Z.Z., Zhao, C.S., Ma, N., Liu, P.F., Ran, L., Xu, W.Y., Chen, J., Liang, Z., Liang, S., Huang, M.Y., Ma, X.C., Zhang, Q., Quan, J.N., Yan, P., Henning, S., Mildenberger, K., Sommerhage, E., Schäfer, M., Stratmann, F., Wiedensohler, A.

Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations.

Loading...
Thumbnail Image
Item

Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain

2011, Liu, P.F., Zhao, C.S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W.Y., Deng, Z.Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F., Wiedensohler, A.

The hygroscopic properties of submicron aerosol particles were determined at a suburban site (Wuqing) in the North China Plain among a cluster of cities during the period 17 July to 12 August, 2009. A High Humidity Tandem Differential Mobility Analyser (HH-TDMA) instrument was applied to measure the hygroscopic growth factor (GF) at 90%, 95% and 98.5% relative humidity (RH) for particles with dry diameters between 50 and 250 nm. The probability distribution of GF (GF-PDF) averaged over the period shows a distinct bimodal pattern, namely, a dominant more-hygroscopic (MH) group and a smaller nearly-hydrophobic (NH) group. The MH group particles were highly hygroscopic, and their GF was relatively constant during the period with average values of 1.54 ± 0.02, 1.81 ± 0.04 and 2.45 ± 0.07 at 90%, 95% and 98.5% RH (D0 = 100 nm), respectively. The NH group particles grew very slightly when exposed to high RH, with GF values of 1.08 ± 0.02, 1.13 ± 0.06 and 1.24 ± 0.13 respectively at 90%, 95% and 98.5% RH (D0 = 100 nm). The hygroscopic growth behaviours at different RHs were well represented by a single-parameter Köhler model. Thus, the calculation of GF as a function of RH and dry diameter could be facilitated by an empirical parameterization of κ as function of dry diameter. A strong diurnal pattern in number fraction of different hygroscopic groups was observed. The average number fraction of NH particles during the day was about 8%, while during the nighttime fractions up to 20% were reached. Correspondingly, the state of mixing in terms of water uptake varied significantly during a day. Simulations using a particle-resolved aerosol box model (PartMC-MOSAIC) suggest that the diurnal variations of aerosol hygroscopicity and mixing state were mainly caused by the evolution of the atmospheric mixing layer. The shallow nocturnal boundary layer during the night facilitated the accumulation of freshly emitted carbonaceous particles (mainly hydrophobic) near the surface while in the morning turbulence entrained the more aged and more hygroscopic particles from aloft and diluted the NH particles near the surface resulting in a decrease in the fraction of NH particles.

Loading...
Thumbnail Image
Item

Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study

2011, Ma, N., Zhao, C.S., Nowak, A., Müller, T., Pfeifer, S., Cheng, Y.F., Deng, Z.Z., Liu, P.F., Xu, W.Y., Ran, L., Yan, P., Göbel, T., Hallbauer, E., Mildenberger, K., Henning, S., Yu, J., Chen, L.L., Zhou, X.J., Stratmann, F., Wiedensohler, A.

The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (ω), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data.

Loading...
Thumbnail Image
Item

Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

2008, Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K.N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., Baltensperger, U.

The chemical composition of submicron (fine mode) and supermicron (coarse mode) aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland) as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol) and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants). In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC) to particulate organic matter (OM) was found in winter (February–March 2005). Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE) than without SDE.

Loading...
Thumbnail Image
Item

In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

2014, Harris, E., Sinha, B., van Pinxteren, D., Schneider, J., Poulain, L., Collett, J., D'Anna, B., Fahlbusch, B., Foley, S., Fomba, K.W., George, C., Gnauk, T., Henning, S., Lee, T., Mertes, S., Roth, A., Stratmann, F., Borrmann, S., Hoppe, P., Herrmann, H.

In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4 (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4 (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

Loading...
Thumbnail Image
Item

Hygroscopic growth and droplet activation of soot particles: Uncoated, succinic or sulfuric acid coated

2012, Henning, S., Ziese, M., Kiselev, A., Saathoff, H., Möhler, O., Mentel, T.F., Buchholz, A., Spindler, C., Michaud, V., Monier, M., Sellegri, K., Stratmann, F.

The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

Loading...
Thumbnail Image
Item

Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign

2013, Wu, Z.J., Poulain, L., Henning, S., Dieckmann, K., Birmili, W., Merkel, M., van Pinxteren, D., Spindler, G., Müller, K., Stratmann, F., Herrmann, H., Wiedensohler, A.

Particle hygroscopic growth at 90% RH (relative humidity), cloud condensation nuclei (CCN) activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in the fall of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA (Hygroscopicity Tandem Differential Mobility Analyzers)-measured (κHTDMA) and chemical composition-derived (κchem) hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30 and 40% for 150 and 100 nm particles). Introducing size-resolved chemical composition substantially improved closure. We found that the evaporation of NH4NO3, which may happen in a HTDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg, is positively correlated with the O : C ratio (κorg = 0.19 × (O : C) − 0.03). Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters) higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only). This difference might be explained by the surface tension effects, solution non-ideality, gas-particle partitioning of semivolatile compounds, and the partial solubility of constituents or non-dissolved particle matter. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc (cloud condensation nucleus counter)-measured (κCCN) and chemical composition (κCCN, chem) was performed using CCNc-derived κ values for individual components. The results show that the κCCN can be well predicted using particle size-resolved chemical composition and the ZSR mixing rule.

Loading...
Thumbnail Image
Item

Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010

2014, Henning, S., Dieckmann, K., Ignatius, K., Schäfer, M., Zedler, P., Harris, E., Sinha, B., van Pinxteren, D., Mertes, S., Birmili, W., Merkel, M., Wu, Z., Wiedensohler, A., Wex, H., Herrmann, H., Stratmann, F.

Within the framework of the "Hill Cap Cloud Thuringia 2010" (HCCT-2010) international cloud experiment, the influence of cloud processing on the activation properties of ambient aerosol particles was investigated. Particles were probed upwind and downwind of an orographic cap cloud on Mt Schmücke, which is part of a large mountain ridge in Thuringia, Germany. The activation properties of the particles were investigated by means of size-segregated cloud condensation nuclei (CCN) measurements at 3 to 4 different supersaturations. The observed CCN spectra together with the total particle spectra were used to calculate the hygroscopicity parameter κ for the upwind and downwind stations. The upwind and downwind critical diameters and κ values were then compared for defined cloud events (FCE) and non-cloud events (NCE). Cloud processing was found to increase the hygroscopicity of the aerosol particles significantly, with an average increase in κ of 50%. Mass spectrometry analysis and isotopic analysis of the particles suggest that the observed increase in the hygroscopicity of the cloud-processed particles is due to an enrichment of sulfate and possibly also nitrate in the particle phase.

Loading...
Thumbnail Image
Item

Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data

2010, Fors, E.O., Rissler, J., Massling, A., Svenningsson, B., Andreae, M.O., Dusek, U., Frank, G.P., Hoffer, A., Bilde, M., Kiss, G., Janitsek, S., Henning, S., Facchini, M.C., Decesari, S., Swietlicki, E.

HUmic-LIke Substances (HULIS) have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondônia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) at relative humidity (RH) <100%, and a cloud condensation nucleus counter (CCNC) at RH >100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m) and 31% (50.3 mN/m) for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m) and 13% (63.3 mN/m).

Loading...
Thumbnail Image
Item

The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

2017, Reddington, C.L., Carslaw, K.S., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Browse, J., Pringle, K.J., Lee, L.A., Yoshioka, M., Johnson, J.S., Regayre, L.A., Spracklen, D.V., Mann, G.W., Clarke, A., Hermann, M., Henning, S., Wex, H., Kristensen, T.B., Leaitch, W.R., Pöschl, U., Rose, D., Andreae, M.O., Schmale, J., Kondo, Y., Oshima, N., Schwarz, J.P., Nenes, A., Anderson, B., Roberts, G.C., Snider, J.R., Leck, C., Quinn, P.K., Chi, X., Ding, A., Jimenez, J.L., Zhang, Q.

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.