Search Results

Now showing 1 - 3 of 3
  • Item
    Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
    (Katlenburg-Lindau : EGU, 2022) Wang, Yuan; Henning, Silvia; Poulain, Laurent; Lu, Chunsong; Stratmann, Frank; Wang, Yuying; Niu, Shengjie; Pöhlker, Mira L.; Herrmann, Hartmut; Wiedensohler, Alfred
    Understanding aerosol particle activation is essential for evaluating aerosol indirect effects (AIEs) on climate. Long-term measurements of aerosol particle activation help to understand the AIEs and narrow down the uncertainties of AIEs simulation. However, they are still scarce. In this study, more than 4 years of comprehensive aerosol measurements were utilized at the central European research station of Melpitz, Germany, to gain insight into the aerosol particle activation and provide recommendations on improving the prediction of number concentration of cloud condensation nuclei (CCN, NCCN). (1) The overall CCN activation characteristics at Melpitz are provided. As supersaturation (SS) increases from 0.1% to 0.7%, the median NCCN increases from 399 to 2144cm-3, which represents 10% to 48% of the total particle number concentration with a diameter range of 10-800nm, while the median hygroscopicity factor (κ) and critical diameter (Dc) decrease from 0.27 to 0.19 and from 176 to 54nm, respectively. (2) Aerosol particle activation is highly variable across seasons, especially at low-SS conditions. At SSCombining double low line0.1%, the median NCCN and activation ratio (AR) in winter are 1.6 and 2.3 times higher than the summer values, respectively. (3) Both κ and the mixing state are size-dependent. As the particle diameter (Dp) increases, κ increases at Dp of 1/440 to 100nm and almost stays constant at Dp of 100 to 200nm, whereas the degree of the external mixture keeps decreasing at Dp of 1/440 to 200nm. The relationships of κ vs. Dp and degree of mixing vs. Dp were both fitted well by a power-law function. (4) Size-resolved κ improves the NCCN prediction. We recommend applying the κ-Dp power-law fit for NCCN prediction at Melpitz, which performs better than using the constant κ of 0.3 and the κ derived from particle chemical compositions and much better than using the NCCN (AR) vs. SS relationships. The κ-Dp power-law fit measured at Melpitz could be applied to predict NCCN for other rural regions. For the purpose of improving the prediction of NCCN, long-term monodisperse CCN measurements are still needed to obtain the κ-Dp relationships for different regions and their seasonal variations.
  • Item
    The value of remote marine aerosol measurements for constraining radiative forcing uncertainty
    (Katlenburg-Lindau : EGU, 2020) Regayre, Leighton A.; Schmale, Julia; Johnson, Jill S.; Tatzelt, Christian; Baccarini, Andrea; Henning, Silvia; Yoshioka, Masaru; Stratmann, Frank; Gysel-Beer, Martin; Grosvenor, Daniel P.; Carslaw, Ken S.
    Aerosol measurements over the Southern Ocean are used to constrain aerosol-cloud interaction radiative forcing (RFaci) uncertainty in a global climate model. Forcing uncertainty is quantified using 1 million climate model variants that sample the uncertainty in nearly 30 model parameters. Measurements of cloud condensation nuclei and other aerosol properties from an Antarctic circumnavigation expedition strongly constrain natural aerosol emissions: default sea spray emissions need to be increased by around a factor of 3 to be consistent with measurements. Forcing uncertainty is reduced by around 7% using this set of several hundred measurements, which is comparable to the 8% reduction achieved using a diverse and extensive set of over 9000 predominantly Northern Hemisphere measurements. When Southern Ocean and Northern Hemisphere measurements are combined, uncertainty in RFaci is reduced by 21 %, and the strongest 20% of forcing values are ruled out as implausible. In this combined constraint, observationally plausible RFaci is around 0.17Wm-2 weaker (less negative) with 95% credible values ranging from-2:51 to-1:17Wm-2 (standard deviation of-2:18 to-1:46Wm-2). The Southern Ocean and Northern Hemisphere measurement datasets are complementary because they constrain different processes. These results highlight the value of remote marine aerosol measurements. © 2020 Laser Institute of America. All rights reserved.
  • Item
    Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments
    (Katlenburg-Lindau : EGU, 2020) Genz, Christa; Schrödner, Roland; Heinold, Bernd; Henning, Silvia; Baars, Holger; Spindler, Gerald; Tegen, Ina
    Atmospheric aerosol particles are the precondition for the formation of cloud droplets and therefore have large influence on the microphysical and radiative properties of clouds. In this work, four different methods to derive or measure number concentrations of cloud condensation nuclei (CCN) were analyzed and compared for presentday aerosol conditions: (i) a model parameterization based on simulated particle concentrations, (ii) the same parameterization based on gravimetrical particle measurements, (iii) direct CCN measurements with a CCN counter, and (iv) lidarderived and in situ measured vertical CCN profiles. In order to allow for sensitivity studies of the anthropogenic impact, a scenario to estimate the maximum CCN concentration under peak aerosol conditions of the mid-1980s in Europe was developed as well. In general, the simulations are in good agreement with the observations. At ground level, average values between 0.7 and 1:5 × 109 CCNm-3 at a supersaturation of 0.2 % were found with the different methods under present-day conditions. The discrimination of the chemical species revealed an almost equal contribution of ammonium sulfate and ammonium nitrate to the total number of CCN for present-day conditions. This was not the case for the peak aerosol scenario, in which it was assumed that no ammonium nitrate was formed while large amounts of sulfate were present, consuming all available ammonia during ammonium sulfate formation. The CCN number concentration at five different supersaturation values has been compared to the measurements. The discrepancies between model and in situ observations were lowest for the lowest (0.1 %) and highest supersaturations (0.7 %). For supersaturations between 0.3 % and 0.5 %, the model overestimated the potentially activated particle fraction by around 30 %. By comparing the simulation with observed profiles, the vertical distribution of the CCN concentration was found to be overestimated by up to a factor of 2 in the boundary layer. The analysis of the modern (year 2013) and the peak aerosol scenario (expected to be representative of the mid-1980s over Europe) resulted in a scaling factor, which was defined as the quotient of the average vertical profile of the peak aerosol and present-day CCN concentration. This factor was found to be around 2 close to the ground, increasing to around 3.5 between 2 and 5 km and approaching 1 (i.e., no difference between present-day and peak aerosol conditions) with further increasing height. © 2020 Author(s).