Search Results

Now showing 1 - 2 of 2
  • Item
    A bioinspired snap-through metastructure for manipulating micro-objects
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2022) Zhang, Xuan; Wang, Yue; Tian, Zhihao; Samri, Manar; Moh, Karsten; McMeeking, Robert M.; Hensel, René; Arzt, Eduard
    Micro-objects stick tenaciously to each other—a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects.
  • Item
    Water as a "glue" : Elasticity-enhanced wet attachment of biomimetic microcup structures
    (Washington, DC [u.a.] : Assoc., 2022) Wang, Yue; Li, Zhengwei; Elhebeary, Mohamed; Hensel, René; Arzt, Eduard; Saif, M. Taher A.
    Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating “self-sealing” and high suction at the cup-substrate interface, converting water into “glue.” Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of “water glue” can innovate underwater transport and manufacturing strategies.