Search Results

Now showing 1 - 5 of 5
  • Item
    Perception of Friction in Tactile Exploration of Micro-structured Rubber Samples
    (Berlin ; Heidelberg : Springer, 2022) Fehlberg, Maja; Kim, Kwang-Seop; Drewing, Knut; Hensel, René; Bennewitz, Roland; Seifi, Hasti; Kappers, Astrid M. L.; Schneider, Oliver; Drewing, Knut; Pacchierotti, Claudio; Abbasimoshaei, Alireza; Huisman, Gijs; Kern, Thorsten A.
    Fingertip friction and the related shear of skin are key mechanical mechanisms in tactile perception, but the perception of friction itself is rarely explored except for the flat surfaces of tactile displays. We investigated the perception of friction for tactile exploration of a unique set of samples whose fabric-like surfaces are equipped with regular arrays of flexible micropillars. The measured fingertip friction increases with decreasing bending stiffness, where the latter is controlled by radius (20–75 µm) and aspect ratio of the micropillars. In forced-choice tasks, participants noticed relative differences in friction as small as 0.2, and even smaller when a sample with less than 100 µm distance between pillars is omitted from the analysis. In an affective ranking of samples upon active touch, the perception of pleasantness is anticorrelated with the measured friction. Our results offer insights towards a rational design of materials with well-controlled surface microstructure which elicit a dedicated tactile appeal.
  • Item
    Tuning the Release Force of Microfibrillar Adhesives by Geometric Design
    (Weinheim : Wiley-VCH, 2022) Barnefske, Lena; Rundel, Fabian; Moh, Karsten; Hensel, René; Zhang, Xuan; Arzt, Eduard
    Switchable micropatterned adhesives exhibit high potential as novel resource-efficient grippers in future pick-and-place systems. In contrast with the adhesion acting during the “pick” phase, the release during the “place” phase has received little research attention so far. For objects smaller than typically 1 mm, release may become difficult as gravitational and inertial forces are no longer sufficient to allow shedding of the object. A compressive overload can initiate release by elastic buckling of the fibrils, but the switching ratio (ratio between high and low adhesion force) is typically only 2–3. In this work, new microfibrillar designs are reported exhibiting directional buckling with high switching ratios in the order of 20. Their functionality is illustrated by in situ optical observation of the contact signatures. Such micropatterns can enable the successful release of small objects with high placement accuracy.
  • Item
    Sliding Mechanism for Release of Superlight Objects from Micropatterned Adhesives
    (Weinheim : Wiley-VCH, 2022) Wang, Yue; Zhang, Xuan; Hensel, René; Arzt, Eduard
    Robotic handling and transfer printing of micrometer-sized superlight objects is a crucial technology in industrial fabrication. In contrast to the precise gripping with micropatterned adhesives, the reliable release of superlight objects with negligible weight is a great challenge. Slanted deformable polymer microstructures, with typical pillar cross-section 150 µm × 50 µm, are introduced with various tilt angles that enable a reduction of adhesion by a switching ratio of up to 500. The experiments demonstrate that the release from a smooth surface involves sliding of the contact during compression and subsequent peeling of the object during retraction. The handling of a 0.5 mg perfluorinated polymer micro-object with high accuracy in repeated pick-and-place cycles is demonstrated. Based on beam theory, the forces and moments acting at the tip of the microstructure are analyzed. As a result, an expression for the pull-off force is proposed as a function of the sliding distance and a guide to an optimized design for these release structures is provided.
  • Item
    A bioinspired snap-through metastructure for manipulating micro-objects
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2022) Zhang, Xuan; Wang, Yue; Tian, Zhihao; Samri, Manar; Moh, Karsten; McMeeking, Robert M.; Hensel, René; Arzt, Eduard
    Micro-objects stick tenaciously to each other—a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects.
  • Item
    Water as a "glue" : Elasticity-enhanced wet attachment of biomimetic microcup structures
    (Washington, DC [u.a.] : Assoc., 2022) Wang, Yue; Li, Zhengwei; Elhebeary, Mohamed; Hensel, René; Arzt, Eduard; Saif, M. Taher A.
    Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating “self-sealing” and high suction at the cup-substrate interface, converting water into “glue.” Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of “water glue” can innovate underwater transport and manufacturing strategies.