Search Results

Now showing 1 - 2 of 2
  • Item
    On 1,3-phosphaazaallenes and their diverse reactivity
    (Cambridge : RSC, 2021) Fischer, Malte; Hering-Junghans, Christian
    1,3-Phosphaazaallenes are heteroallenes of the type RP-C-NR′ and little is known about their reactivity. In here we describe the straightforward synthesis of ArPCNR (Ar = Mes*, 2,4,6-tBu-C6H2;MesTer, 2.6-(2,4,6-Me3C6H2)-C6H3;DipTer, 2.6-(2,6-iPr2C6H2)-C6H3; R =tBu; Xyl, 2,6-Me2C6H3) starting from phospha-Wittig reagents ArPPMe3and isonitriles CNR. It is further shown that ArPCNtBu are thermally labile with respect to the loss of iso-butene and it is shown that the cyanophosphines ArP(H)CN are synthetically feasible and form the corresponding phosphanitrilium borates with B(C6F5)3, whereas deprotonation ofDipTerP(H)CN was shown to give an isolable cyanidophosphide. Lastly, the reactivity of ArPCNR towards Pier's borane was investigated, showing hydroboration of the C-N bond in Mes*PCNtBu to give a hetero-butadiene, while withDipTerPCNXyl the formation of the Lewis acid-base adduct with a B-P linkage was observed. © The Royal Society of Chemistry 2021.
  • Item
    A selective route to aryl-triphosphiranes and their titanocene-induced fragmentation
    (Cambridge : RSC, 2019) Schumann, André; Reiß, Fabian; Jiao, Haijun; Rabeah, Jabor; Siewert, Jan-Erik; Krummenacher, Ivo; Braunschweig, Holger; Hering-Junghans, Christian
    Triphosphiranes are three-membered phosphorus cycles and their fundamental reactivity has been studied in recent decades. We recently developed a high-yielding, selective synthesis for various aryl-substituted triphosphiranes. Variation of the reaction conditions in combination with theoretical studies helped to rationalize the formation of these homoleptic phosphorus ring systems and highly reactive intermediates could be isolated. In addition we showed that a titanocene synthon [Cp2Ti(btmsa)] facilitates the selective conversion of these triphosphiranes into titanocene diphosphene complexes. This unexpected reactivity mode was further studied theoretically and experimental evidence is presented for the proposed reaction mechanism. This journal is © The Royal Society of Chemistry.