Search Results

Now showing 1 - 7 of 7
  • Item
    Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany
    (München : European Geopyhsical Union, 2014) Scheinhardt, S.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H.
    In the course of two field campaigns, size-segregated particle samples were collected at nine sites in Germany, including traffic, urban, rural, marine and mountain sites. During the chemical characterisation of the samples some of them were found to contain an unknown substance that was later identified as hydroxymethanesulfonic acid (HMSA). HMSA is known to be formed during the reaction of S(IV) (HSO3− or SO32−) with formaldehyde in the aqueous phase. Due to its stability, HMSA can act as a reservoir species for S(IV) in the atmosphere and is therefore of interest for the understanding of atmospheric sulfur chemistry. However, no HMSA data are available for atmospheric particles from central Europe, and even on a worldwide scale data are scarce. Thus, the present study now provides a representative data set with detailed information on HMSA concentrations in size-segregated central European aerosol particles. HMSA mass concentrations in this data set were highly variable: HMSA was found in 224 out of 738 samples (30%), sometimes in high mass concentrations exceeding those of oxalic acid. On average over all 154 impactor runs, 31.5 ng m−3 HMSA was found in PM10, contributing 0.21% to the total mass. The results show that the particle diameter, the sampling location, the sampling season and the air mass origin impact the HMSA mass concentration. Highest concentrations were found in the particle fraction 0.42–1.2 μm, at urban sites, in winter and with eastern (continental) air masses, respectively. The results suggest that HMSA is formed during aging of pollution plumes. A positive correlation of HMSA with sulfate, oxalate and PM is found (R2 > 0.4). The results furthermore suggest that the fraction of HMSA in PM slightly decreases with increasing pH.
  • Item
    Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
    (München : European Geopyhsical Union, 2012) Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett Jr., J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, R.A.; Buchmann, N.; Eugster, W.
    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.
  • Item
    On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe
    (München : European Geopyhsical Union, 2014) van Pinxteren, D.; Neusüß, C.; Herrmann, H.
    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large data set of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation during intense radiation days in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded as representative for typical central European continental conditions.
  • Item
    Aerosol size-resolved trace metal composition in remote northern tropical atlantic marine environment: Case study cape verde islands
    (München : European Geopyhsical Union, 2013) Fomba, K.W.; Müller, K.; van Pinxteren, D.; Herrmann, H.
    Size-resolved trace metal concentrations of 15 elements in aerosol particles at the Cape Verde Atmospheric Observatory (CVAO) under remote background conditions were investigated through analysis of aerosol samples collected during intensive field studies from January 2007 to November 2011 using total reflection x-ray fluorescence (TXRF). The identification of the main air mass origin that influence remote marine aerosol in the northern tropical Atlantic has been investigated. In total, 317 samples were collected. The dataset was analyzed according to the main air mass inflow at the station. We found that remote conditions make up about 45% of the meteorological conditions in a year at CVAO and thus the northern tropical Atlantic. Surprisingly, air masses from North America are often responsible for higher trace metal concentrations in this region. Elements such as Zn, Pb, Cu, Cr, Ni, and V were mostly found in the submicron size fractions, while elements with dominant crustal or oceanic origin such as Fe, Ti, Mn, Sr, and Rb were found in the coarse fractions (>1 μm). The highest metal concentrations, especially for Zn (3.23 ng m−3), Cu (0.81 ng m−3), Sr (2.63 ng m−3), and Cr (0.53 ng m−3), were observed in air masses originating from North America and the concentrations were within the same concentration range to those reported previously in the literature for remote marine aerosols. Fe (12.26 ng m−3), Ti (0.91 ng m−3), and Mn (0.35 ng m−3) showed higher concentrations when air mass came from Europe and the Canary Islands. Pb concentration was low (<0.20 ng m−3) and did not vary significantly with air mass direction. The low Pb concentration is indicative of the complete phase-out of leaded gasoline even in African countries. Crustal enrichment factor values decreased from fine to coarse-mode particles with low values (<4) observed for Fe, Mn, and Rb, and high values (>20) for Zn, Cu, Ni, Cr, Pb, and Se. The observed enrichment of the elements was attributed to crustal, marine, anthropogenic, and biogenic sources, as well as long-range transport and resuspension. Zn, Cu and Pb were indicators of anthropogenic activities, while Ti and Sr were indicators of crustal and marine origin, respectively. Oceanic and biogenic emissions might have contributed to most of the Se observed. This work provides the first long-term size-resolved trace metals study for remote tropical northern Atlantic marine aerosols and the dataset could serve as good initiation of yearly flux estimates.
  • Item
    Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010
    (München : European Geopyhsical Union, 2014) Henning, S.; Dieckmann, K.; Ignatius, K.; Schäfer, M.; Zedler, P.; Harris, E.; Sinha, B.; van Pinxteren, D.; Mertes, S.; Birmili, W.; Merkel, M.; Wu, Z.; Wiedensohler, A.; Wex, H.; Herrmann, H.; Stratmann, F.
    Within the framework of the "Hill Cap Cloud Thuringia 2010" (HCCT-2010) international cloud experiment, the influence of cloud processing on the activation properties of ambient aerosol particles was investigated. Particles were probed upwind and downwind of an orographic cap cloud on Mt Schmücke, which is part of a large mountain ridge in Thuringia, Germany. The activation properties of the particles were investigated by means of size-segregated cloud condensation nuclei (CCN) measurements at 3 to 4 different supersaturations. The observed CCN spectra together with the total particle spectra were used to calculate the hygroscopicity parameter κ for the upwind and downwind stations. The upwind and downwind critical diameters and κ values were then compared for defined cloud events (FCE) and non-cloud events (NCE). Cloud processing was found to increase the hygroscopicity of the aerosol particles significantly, with an average increase in κ of 50%. Mass spectrometry analysis and isotopic analysis of the particles suggest that the observed increase in the hygroscopicity of the cloud-processed particles is due to an enrichment of sulfate and possibly also nitrate in the particle phase.
  • Item
    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010
    (München : European Geopyhsical Union, 2014) Tilgner, A.; Schöne, L.; Bräuer, P.; van Pinxteren, D.; Hoffmann, E.; Spindler, G.; Styler, S.A.; Mertes, S.; Birmili, W.; Otto, R.; Merkel, M.; Weinhold, K.; Wiedensohler, A.; Deneke, H.; Schrödner, R.; Wolke, R.; Schneider, J.; Haunold, W.; Engel, A.; Wéber, A.; Herrmann, H.
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow during the Lagrangian-type "Hill Cap Cloud Thuringia 2010" experiment (HCCT-2010), which was performed in September and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow conditions (i.e. representative air masses at the different measurement sites). The primary goal of the present study was to identify time periods during the 6-week duration of the experiment in which these conditions were fulfilled and therefore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) local flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert tracers, SF6 tracer experiments in the experiment area, and regional modelling. This study represents the first application of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross-correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type experiment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as reference cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the measured chemical and physical data during HCCT-2010 (see https://www.atmos-chem-phys.net/special_issue287.html).
  • Item
    Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive
    (München : European Geopyhsical Union, 2010) Müller, K.; Lehmann, S.; van Pinxteren, D.; Gnauk, T.; Niedermeier, N.; Wiedensohler, A.; Herrmann, H.
    The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 μg/m3 from impactor samples and to 24.2 μg/m3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1–8 ng/m3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5–10 μm; 1.2–3.5 μm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71μg/m3) and EC (1.25 μg/m3) was measured. The minimum of TC (0.25 μg/m3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 μg m3), calcium (0.22 vs. 0.03 μg m3) and potassium (0.33 vs. 0.02 μg m3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 μm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78–151 ng/m3) and methanesulfonic acid (MSA, 25–100 ng/m3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences.