Search Results

Now showing 1 - 2 of 2
  • Item
    On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe
    (München : European Geopyhsical Union, 2014) van Pinxteren, D.; Neusüß, C.; Herrmann, H.
    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large data set of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation during intense radiation days in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded as representative for typical central European continental conditions.
  • Item
    Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive
    (München : European Geopyhsical Union, 2010) Müller, K.; Lehmann, S.; van Pinxteren, D.; Gnauk, T.; Niedermeier, N.; Wiedensohler, A.; Herrmann, H.
    The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 μg/m3 from impactor samples and to 24.2 μg/m3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1–8 ng/m3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5–10 μm; 1.2–3.5 μm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71μg/m3) and EC (1.25 μg/m3) was measured. The minimum of TC (0.25 μg/m3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 μg m3), calcium (0.22 vs. 0.03 μg m3) and potassium (0.33 vs. 0.02 μg m3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 μm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78–151 ng/m3) and methanesulfonic acid (MSA, 25–100 ng/m3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences.