Search Results

Now showing 1 - 4 of 4
  • Item
    Reactive Halogens in the Marine Boundary Layer (RHaMBLe): The tropical North Atlantic experiments
    (München : European Geopyhsical Union, 2010) Lee, J.D.; McFiggans, G.; Allan, J.D.; Baker, A.R.; Ball, S.M.; Benton, A.K.; Carpenter, L.J.; Commane, R.; Finley, B.D.; Evans, M.; Fuentes, E.; Furneaux, K.; Goddard, A.; Good, N.; Hamilton, J.F.; Heard, D.E.; Herrmann, H.; Hollingsworth, A.; Hopkins, J.R.; Ingham, T.; Irwin, M.; Jones, C.E.; Jones, R.L.; Keene, W.C.; Lawler, M.J.; Lehmann, S.; Lewis, A.C.; Long, M.S.; Mahajan, A.; Methven, J.; Moller, S.J.; Müller, K.; Müller, T.; Niedermeier, N.; O'Doherty, S.; Oetjen, H.; Plane, J.M.C.; Pszenny, A.A.P.; Read, K.A.; Saiz-Lopez, A.; Saltzman, E.S.; Sander, R.; von Glasow, R.; Whalley, L.; Wiedensohler, A.; Young, D.
    The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
  • Item
    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010
    (München : European Geopyhsical Union, 2014) Tilgner, A.; Schöne, L.; Bräuer, P.; van Pinxteren, D.; Hoffmann, E.; Spindler, G.; Styler, S.A.; Mertes, S.; Birmili, W.; Otto, R.; Merkel, M.; Weinhold, K.; Wiedensohler, A.; Deneke, H.; Schrödner, R.; Wolke, R.; Schneider, J.; Haunold, W.; Engel, A.; Wéber, A.; Herrmann, H.
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow during the Lagrangian-type "Hill Cap Cloud Thuringia 2010" experiment (HCCT-2010), which was performed in September and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow conditions (i.e. representative air masses at the different measurement sites). The primary goal of the present study was to identify time periods during the 6-week duration of the experiment in which these conditions were fulfilled and therefore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) local flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert tracers, SF6 tracer experiments in the experiment area, and regional modelling. This study represents the first application of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross-correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type experiment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as reference cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the measured chemical and physical data during HCCT-2010 (see https://www.atmos-chem-phys.net/special_issue287.html).
  • Item
    Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz
    (München : European Geopyhsical Union, 2011) Poulain, L.; Spindler, G.; Birmili, W.; Plass-Dülmer, C.; Weinhold, K.; Wiedensohler, A.; Herrmann, H.
    Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid), some Polycyclic Aromatic Hydrocarbon (PAHs) or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany) using an Aerodyne Aerosol Mass Spectrometer (AMS). Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59%) while in winter, the nitrate fraction was more prevalent (34.4%). The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3− = 3.6 μg m−3) than in summer (ΔNO3− = 0.7 μg m−3). The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC) ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc) from −0.66 to −0.4), which could be correlated to hydroxyl radical (OH) and ozone concentrations, indicating a photochemical transformation process. In summer, the organic particulate matter seemed to be heavily influenced by regional secondary formation and transformation processes, facilitated by photochemical production processes as well as a diurnal cycling of the substances between the gas and particulate phase. In winter, these processes were obviously less pronounced (OM/OC ranging from 1.60 to 1.67 and OSc from −0.8 to −0.7), so that organic matter apparently originated mainly from aged particles and long range transport.
  • Item
    Treatment of non-ideality in the SPACCIM multiphase model - Part 1: Model development
    (München : European Geopyhsical Union, 2016) Rusumdar, A.J.; Wolke, R.; Tilgner, A.; Herrmann, H.
    Ambient tropospheric deliquesced particles generally comprise a complex mixture of electrolytes, organic compounds, and water. Dynamic modeling of physical and chemical processes in this complex matrix is challenging. Thus, up-to-date multiphase chemistry models generally do not consider non-ideal solution effects. Therefore, the present study was aimed at presenting further development of the SPACCIM (Spectral Aerosol Cloud Chemistry Interaction Model) through treatment of solution non-ideality, which has not been considered before. The present paper firstly describes the model developments including (i) the implementation of solution non-ideality in aqueous-phase reaction kinetics in the SPACCIM framework, (ii) the advancements in the coupling scheme of microphysics and multiphase chemistry and (iii) the required adjustments of the numerical schemes, especially in the sparse linear solver and the calculation of the Jacobian. Secondly, results of sensitivity investigations are outlined, aiming at the evaluation of different activity coefficient modules and the examination of the contributions of different intermolecular forces to the overall activity coefficients. Finally, first results obtained with the new model framework are presented. The SPACCIM parcel model was developed and, so far, applied for the description of aerosol–cloud interactions. To advance SPACCIM also for modeling physical and chemical processes in deliquesced particles, the solution non-ideality has to be taken into account by utilizing activities in reaction terms instead of aqueous concentrations. The main goal of the extended approach was to provide appropriate activity coefficients for solved species. Therefore, an activity coefficient module was incorporated into the kinetic model framework of SPACCIM. Based on an intercomparison of different activity coefficient models and the comparison with experimental data, the AIOMFAC approach was implemented and extended by additional interaction parameters from the literature for mixed organic–inorganic systems. Moreover, the performance and the capability of the applied activity coefficient module were evaluated by means of water activity measurements, literature data and results of other activity coefficient models. Comprehensive comparison studies showed that the SpactMod (SPACCIM activity coefficient module) is valuable for predicting the thermodynamic behavior of complex mixtures of multicomponent atmospheric aerosol particles. First simulations with a detailed chemical mechanism have demonstrated the applicability of SPACCIM-SpactMod. The simulations indicate that the treatment of solution non-ideality might be needed for modeling multiphase chemistry processes in deliquesced particles. The modeled activity coefficients imply that chemical reaction fluxes of chemical processes in deliquesced particles can be both decreased and increased depending on the particular species involved in the reactions. For key ions, activity coefficients on the order of 0.1–0.8 and a strong dependency on the charge state as well as the RH conditions are modeled, implying a lowered chemical processing of ions in concentrated solutions. In contrast, modeled activity coefficients of organic compounds are in some cases larger than 1 under deliquesced particle conditions and suggest the possibility of an increased chemical processing of organic compounds. Moreover, the model runs have shown noticeable differences in the pH values calculated with and without consideration of solution non-ideality. On average, the predicted pH values of the simulations considering solution non-ideality are −0.27 and −0.44 pH units lower under 90 and 70 % RH conditions, respectively. More comprehensive results of detailed SPACCIM-SpactMod studies on the multiphase processing in organic–inorganic mixtures of deliquesced particles are described in a companion paper.