Search Results

Now showing 1 - 3 of 3
  • Item
    Long-range and local air pollution: What can we learn from chemical speciation of particulate matter at paired sites?
    (Katlenburg-Lindau : EGU, 2020) Pandolfi, Marco; Mooibroek, Dennis; Hopke, Philip; van Pinxteren, Dominik; Querol, Xavier; Herrmann, Hartmut; Alastuey, Andrés; Favez, Olivier; Hüglin, Christoph; Perdrix, Esperanza; Riffault, Véronique; Sauvage, Stéphane; van der Swaluw, Eric; Tarasova, Oksana; Colette, Augustin
    Here we report results of a detailed analysis of the urban and non-urban contributions to particulate matter (PM) concentrations and source contributions in five European cities, namely Schiedam (the Netherlands, NL), Lens (France, FR), Leipzig (Germany, DE), Zurich (Switzerland, CH) and Barcelona (Spain, ES). PM chemically speciated data from 12 European paired monitoring sites (one traffic, five urban, five regional and one continental background) were analysed by positive matrix factorisation (PMF) and Lenschow's approach to assign measured PM and source contributions to the different spatial levels. Five common sources were obtained at the 12 sites: sulfate-rich (SSA) and nitrate-rich (NSA) aerosols, road traffic (RT), mineral matter (MM), and aged sea salt (SS). These sources explained from 55 % to 88 % of PM mass at urban low-traffic-impact sites (UB) depending on the country. Three additional common sources were identified at a subset of sites/countries, namely biomass burning (BB) (FR, CH and DE), explaining an additional 9 %-13 % of PM mass, and residual oil combustion (V-Ni) and primary industrial (IND) (NL and ES), together explaining an additional 11 %-15 % of PM mass. In all countries, the majority of PM measured at UB sites was of a regional+continental (R+C) nature (64 %-74 %). The R+C PM increments due to anthropogenic emissions in DE, NL, CH, ES and FR represented around 66 %, 62 %, 52 %, 32 % and 23 %, respectively, of UB PM mass. Overall, the R+C PM increments due to natural and anthropogenic sources showed opposite seasonal profiles with the former increasing in summer and the latter increasing in winter, even if exceptions were observed. In ES, the anthropogenic R+C PM increment was higher in summer due to high contributions from regional SSA and V-Ni sources, both being mostly related to maritime shipping emissions at the Spanish sites. Conversely, in the other countries, higher anthropogenic R+C PM increments in winter were mostly due to high contributions from NSA and BB regional sources during the cold season. On annual average, the sources showing higher R+C increments were SSA (77 %-91 % of SSA source contribution at the urban level), NSA (51 %-94 %), MM (58 %-80 %), BB (42 %-78 %) and IND (91 % in NL). Other sources showing high R+C increments were photochemistry and coal combustion (97 %-99 %; identified only in DE). The highest regional SSA increment was observed in ES, especially in summer, and was related to ship emissions, enhanced photochemistry and peculiar meteorological patterns of the Western Mediterranean. The highest R+C and urban NSA increments were observed in NL and associated with high availability of precursors such as NOx and NH3. Conversely, on average, the sources showing higher local increments were RT (62 %-90 % at all sites) and V-Ni (65 %-80 % in ES and NL). The relationship between SSA and V-Ni indicated that the contribution of ship emissions to the local sulfate concentrations in NL has strongly decreased since 2007 thanks to the shift from high-sulfur-to low-sulfur-content fuel used by ships. An improvement of air quality in the five cities included here could be achieved by further reducing local (urban) emissions of PM, NOx and NH3 (from both traffic and non-traffic sources) but also SO2 and PM (from maritime ships and ports) and giving high relevance to non-urban contributions by further reducing emissions of SO2 (maritime shipping) and NH3 (agriculture) and those from industry, regional BB sources and coal combustion. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    The impact of biomass burning and aqueous-phase processing on air quality: A multi-year source apportionment study in the Po Valley, Italy
    (Katlenburg-Lindau : EGU, 2020) Paglione, Marco; Gilardoni, Stefania; Rinaldi, Matteo; Decesari, Stefano; Zanca, Nicola; Sandrini, Silvia; Giulianelli, Lara; Bacco, Dimitri; Ferrari, Silvia; Poluzzi, Vanes; Scotto, Fabiana; Trentini, Arianna; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Canonaco, Francesco; Prévôt, André S.H.; Massoli, Paola; Carbone, Claudio; Facchini, Maria Cristina; Fuzzi, Sandro
    The Po Valley (Italy) is a well-known air quality hotspot characterized by particulate matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of Emilia-Romagna regional project "Supersito", the southern Po Valley submicron aerosol chemical composition was characterized by means of high-resolution aerosol mass spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over 4 years (from 2011 to 2014) at two different sites (Bologna, BO, urban background, and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for averages of 45 ± 8 % (ranging from 33 % to 58 %) and 46 ± 7 % (ranging from 36 % to 50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and rural sites, respectively. Primary organic aerosol (POA) comprises biomass burning (23±13 % of OA) and fossil fuel (12±7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban / rural concentration ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 % to 38 % of the total OA mass. Secondary organic aerosol (SOA) contributes to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at the urban and rural sites, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning aging products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14 %-44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. © 2020 Author(s).
  • Item
    The acidity of atmospheric particles and clouds
    (Katlenburg-Lindau : EGU, 2020) Pye, Havala O.T.; Nenes, Athanasios; Alexander, Becky; Ault, Andrew P.; Barth, Mary C.; Clegg, Simon L.; Collett Jr, Jeffrey L.; Fahey, Kathleen M.; Hennigan, Christopher J.; Herrmann, Hartmut; Kanakidou, Maria; Kelly, James T.; Ku, I-Ting; McNeill, V. Faye; Riemer, Nicole; Schaefer, Thomas; Shi, Guoliang; Tilgner, Andreas; Walker, John T.; Wang, Tao; Weber, Rodney; Xing, Jia; Zaveri, Rahul A.; Zuend, Andreas
    Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale. © 2020 Author(s).