Search Results

Now showing 1 - 5 of 5
  • Item
    Multiphase MCM-CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014
    (Katlenburg-Lindau : EGU, 2020) Zhu, Yanhong; Tilgner, Andreas; Hoffmann, Erik Hans; Herrmann, Hartmut; Kawamura, Kimitaka; Yang, Lingxiao; Xue, Likun; Wang, Wenxing
    Despite the high abundance of secondary aerosols in the atmosphere, their formation mechanisms remain poorly understood. In this study, the Master Chemical Mechanism (MCM) and the Chemical Aqueous-Phase Radical Mechanism (CAPRAM) are used to investigate the multiphase formation and processing of secondary aerosol constituents during the advection of air masses towards the measurement site of Mt. Tai in northern China. Trajectories with and without chemical–cloud interaction are modeled. Modeled radical and non-radical concentrations demonstrate that the summit of Mt. Tai, with an altitude of ∼1.5 km a.m.s.l., is characterized by a suburban oxidants budget. The modeled maximum gas-phase concentrations of the OH radical are 3.2×106 and 3.5×106 molec. cm−3 in simulations with and without cloud passages in the air parcel, respectively. In contrast with previous studies at Mt. Tai, this study has modeled chemical formation processes of secondary aerosol constituents under day vs. night and cloud vs. non-cloud cases along the trajectories towards Mt. Tai in detail. The model studies show that sulfate is mainly produced in simulations where the air parcel is influenced by cloud chemistry. Under the simulated conditions, the aqueous reaction of HSO−3 with H2O2 is the major contributor to sulfate formation, contributing 67 % and 60 % in the simulations with cloud and non-cloud passages, respectively. The modeled nitrate formation is higher at nighttime than during daytime. The major pathway is aqueous-phase N2O5 hydrolysis, with a contribution of 72 % when cloud passages are considered and 70 % when they are not. Secondary organic aerosol (SOA) compounds, e.g., glyoxylic, oxalic, pyruvic and malonic acid, are found to be mostly produced from the aqueous oxidations of hydrated glyoxal, hydrated glyoxylic acid, nitro-2-oxopropanoate and hydrated 3-oxopropanoic acid, respectively. Sensitivity studies reveal that gaseous volatile organic compound (VOC) emissions have a huge impact on the concentrations of modeled secondary aerosol compounds. Increasing the VOC emissions by a factor of 2 leads to linearly increased concentrations of the corresponding SOA compounds. Studies using the relative incremental reactivity (RIR) method have identified isoprene, 1,3-butadiene and toluene as the key precursors for glyoxylic and oxalic acid, but only isoprene is found to be a key precursor for pyruvic acid. Additionally, the model investigations demonstrate that an increased aerosol partitioning of glyoxal can play an important role in the aqueous-phase formation of glyoxylic and oxalic acid. Overall, the present study is the first that provides more detailed insights in the formation pathways of secondary aerosol constituents at Mt. Tai and clearly emphasizes the importance of aqueous-phase chemical processes on the production of multifunctional carboxylic acids.
  • Item
    Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds
    (Katlenburg-Lindau : EGU, 2019) Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Mutzel, Anke; Böge, Olaf; Rodigast, Maria; Poulain, Laurent; van Pinxteren, Dominik; Wolke, Ralf; Aumont, Bernard; Herrmann, Hartmut
    This paper presents a new CAPRAM-GECKOA protocol for mechanism auto-generation of aqueous-phase organic processes. For the development, kinetic data in the literature were reviewed and a database with 464 aqueousphase reactions of the hydroxyl radical with organic compounds and 130 nitrate radical reactions with organic compounds has been compiled and evaluated. Five different methods to predict aqueous-phase rate constants have been evaluated with the help of the kinetics database: gas-aqueous phase correlations, homologous series of various compound classes, radical reactivity comparisons, Evans-Polanyi-type correlations, and structure-activity relationships (SARs). The quality of these prediction methods was tested as well as their suitability for automated mechanism construction. Based on this evaluation, SARs form the basis of the new CAPRAM-GECKO-A protocol. Evans-Polanyi-type correlations have been advanced to consider all available H atoms in a molecule besides the H atoms with only the weakest bond dissociation enthalpies (BDEs). The improved Evans- Polanyi-type correlations are used to predict rate constants for aqueous-phase NO3 and organic compounds reactions. Extensive tests have been performed on essential parameters and on highly uncertain parameters with limited experimental data. These sensitivity studies led to further improvements in the new CAPRAM-GECKO-A protocol but also showed current limitations. Biggest uncertainties were observed in uptake processes and the estimation of Henry's law coefficients as well as radical chemistry, in particular the degradation of alkoxy radicals. Previous estimation methods showed several deficits, which impacted particle growth. For further evaluation, a 1,3,5-trimethylbenzene oxidation experiment has been performed in the aerosol chamber "Leipziger Aerosolkammer" (LEAK) at high relative humidity conditions and compared to a multiphase mechanism using the Master Chemical Mechanism (MCMv3.2) in the gas phase and using a methylglyoxal oxidation scheme of about 600 reactions generated with the new CAPRAM-GECKO-A protocol in the aqueous phase. While it was difficult to evaluate single particle constituents due to concentrations close to the detection limits of the instruments applied, the model studies showed the importance of aqueous-phase chemistry in respect to secondary organic aerosol (SOA) formation and particle growth. The new protocol forms the basis for further CAPRAM mechanism development towards a new version 4.0. Moreover, it can be used as a supplementary tool for aerosol chambers to design and analyse experiments of chemical complexity and help to understand them on a molecular level. © 2019 Author(s).
  • Item
    Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy
    (München : European Geopyhsical Union, 2016) Sullivan, Amy P.; Hodas, Natasha; Turpin, Barbara J.; Skog, Kate; Keutsch, Frank N.; Gilardoni, Stefania; Paglione, Marco; Rinaldi, Matteo; Decesari, Stefano; Facchini, Maria Cristina; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Nemitz, Eiko; Twigg, Marsailidh M.; Collett, Jeffrey L. Jr.
    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas phase. These products can remain in the particle phase after water evaporation, forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near-real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study) 2012 campaign in the Po Valley, Italy, to search for evidence of aqSOA. Our analysis focused on four periods: Period A on 19–21 June, Period B on 30 June and 1–2 July, Period C on 3–5 July, and Period D on 6–7 July to represent the first (Period A) and second (Periods B, C, and D) halves of the study. These periods were picked to cover varying levels of WSOC and aerosol liquid water. In addition, back trajectory analysis suggested all sites sampled similar air masses on a given day. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH, with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.84), aerosol liquid water (R2 = 0.65), RH (R2 = 0.39), and aerosol nitrate (R2 = 0.66). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors, determined from application of positive matrix factorization analysis on the aerosol mass spectrometer observations of the submicron non-refractory organic particle composition, suggested that the WSOC differed in the two halves of the study (Period A WSOC vs. OOA-2 R2 = 0.83 and OOA-4 R2 = 0.04, whereas Period C WSOC vs. OOA-2 R2 = 0.03 and OOA-4 R2 = 0.64). OOA-2 had a high O ∕ C (oxygen ∕ carbon) ratio of 0.77, providing evidence that aqueous processing was occurring during Period A. Key factors of local aqSOA production during Period A appear to include air mass stagnation, which allows aqSOA precursors to accumulate in the region; the formation of substantial local particulate nitrate during the overnight hours, which enhances water uptake by the aerosol; and the presence of significant amounts of ammonia, which may contribute to ammonium nitrate formation and subsequent water uptake and/or play a more direct role in the aqSOA chemistry.
  • Item
    Treatment of non-ideality in the SPACCIM multiphase model-Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
    (Katlenburg-Lindau : EGU, 2020) Jhony Rusumdar, Ahmad; Tilgner, Andreas; Wolke, Ralf; Herrmann, Hartmut
    Tropospheric deliquesced particles are characterised by concentrated non-ideal solutions ("aerosol liquid water" or ALW) that can affect the occurring multiphase chemistry. However, such non-ideal solution effects have generally not yet been considered in and investigated by current complex multiphase chemistry models in an adequate way. Therefore, the present study aims at accessing the impact of non-ideality on multiphase chemical processing in concentrated aqueous aerosols. Simulations with the multiphase chemistry model (SPACCIM-SpactMod) are performed under different environmental and microphysical conditions with and without a treatment of non-ideal solutions in order to assess its impact on aqueous-phase chemical processing. The present study shows that activity coefficients of inorganic ions are often below unity under 90% RH-deliquesced aerosol conditions and that most uncharged organic compounds exhibit activity coefficient values of around or even above unity. Due to this behaviour, model studies have revealed that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions (TMIs), oxidants, and related chemical subsystems such as organic chemistry. In detail, both the chemical formation and oxidation rates of Fe(II) are substantially lowered by a factor of 2.8 in the non-ideal base case compared to the ideal case. The reduced Fe(II) processing in the non-ideal base case, including lowered chemical rates of the Fenton reaction (70 %), leads to a reduced processing of HOx=HOy under deliquesced aerosol conditions. Consequently, higher multiphase H2O2 concentrations (larger by a factor of 3.1) and lower aqueous-phase OH concentrations (lower by a factor of 4) are modelled during non-cloud periods. For H2O2, a comparison of the chemical reaction rates reveals that the most important sink, the reaction with HSO3 , contributes with a 40% higher rate in the non-ideal base case than in the ideal case, leading to more efficient sulfate formation. On the other hand, the chemical formation rates of the OH radical are about 50% lower in the non-ideal base case than in the ideal case, leading to lower degradation rates of organic aerosol components. Thus, considering non-ideality influences the chemical processing and the concentrations of organic compounds under deliquesced particle conditions in a compound-specific manner. For example, the reduced oxidation budget under deliquesced particle conditions leads to both increased and decreased concentration levels, e.g. of important C2=C3 carboxylic acids. For oxalic acid, the present study demonstrates that the non-ideality treatment enables more realistic predictions of high oxalate concentrations than observed under ambient highly polluted conditions. Furthermore, the simulations imply that lower humidity conditions, i.e. more concentrated solutions, might promote higher oxalic acid concentration levels in aqueous aerosols due to differently affected formation and degradation processes. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    The Importance of the Representation of DMS Oxidation in Global Chemistry‐Climate Simulations
    (Hoboken, NJ : Wiley, 2021) Hoffmann, Erik Hans; Heinold, Bernd; Kubin, Anne; Tegen, Ina; Herrmann, Hartmut
    The oxidation of dimethyl sulfide (DMS) is key for the natural sulfate aerosol formation and its climate impact. Multiphase chemistry is an important oxidation pathway but neglected in current chemistry-climate models. Here, the DMS chemistry in the aerosol-chemistry-climate model ECHAM-HAMMOZ is extended to include multiphase methane sulfonic acid (MSA) formation in deliquesced aerosol particles, parameterized by reactive uptake. First simulations agree well with observed gas-phase MSA concentrations. The implemented formation pathways are quantified to contribute up to 60% to the sulfate aerosol burden over the Southern Ocean and Arctic/Antarctic regions. While globally the impact on the aerosol radiative forcing almost levels off, a significantly more positive solar radiative forcing of up to +0.1 W m−2 is computed in the Arctic (>60°N). The findings imply the need of both further laboratory and model studies on the atmospheric multiphase oxidation of DMS.