Search Results

Now showing 1 - 4 of 4
  • Item
    Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China
    (Katlenburg-Lindau : EGU, 2017) Li, Jiarong; Wang, Xinfeng; Chen, Jianmin; Zhu, Chao; Li, Weijun; Li, Chengbao; Liu, Lu; Xu, Caihong; Wen, Liang; Xue, Likun; Wang, Wenxing; Ding, Aijun; Herrmann, Hartmut
    The chemical composition of 39 cloud samples and droplet size distributions in 24 cloud events were investigated at the summit of Mt. Tai from July to October 2014. Inorganic ions, organic acids, metals, HCHO, H2O2, sulfur( IV), organic carbon, and elemental carbon as well as pH and electrical conductivity were analyzed. The acidity of the cloud water significantly decreased from a reported value of pH 3.86 during 2007-2008 (Guo et al., 2012) to pH 5.87 in the present study. The concentrations of nitrate and ammonium were both increased since 2007-2008, but the overcompensation of ammonium led to an increase in the mean pH value. The microphysical properties showed that cloud droplets were smaller than 26.0 μm and most were in the range of 6.0-9.0 μm at Mt. Tai. The maximum droplet number concentration (Nd) was associated with a droplet size of 7.0 μm. High liquid water content (LWC) values could facilitate the formation of larger cloud droplets and broadened the droplet size distribution. Cloud droplets exhibited a strong interaction with atmospheric aerosols. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions and smaller sizes with increased numbers of cloud droplets. The lower pH values were likely to occur at higher PM2.5 concentrations. Clouds were an important sink for soluble materials in the atmosphere. The dilution effect of cloud water should be considered when estimating concentrations of soluble components in the cloud phase.
  • Item
    Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
    (Katlenburg-Lindau : EGU, 2018) Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin
    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  • Item
    Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds
    (Katlenburg-Lindau : EGU, 2019) Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Mutzel, Anke; Böge, Olaf; Rodigast, Maria; Poulain, Laurent; van Pinxteren, Dominik; Wolke, Ralf; Aumont, Bernard; Herrmann, Hartmut
    This paper presents a new CAPRAM-GECKOA protocol for mechanism auto-generation of aqueous-phase organic processes. For the development, kinetic data in the literature were reviewed and a database with 464 aqueousphase reactions of the hydroxyl radical with organic compounds and 130 nitrate radical reactions with organic compounds has been compiled and evaluated. Five different methods to predict aqueous-phase rate constants have been evaluated with the help of the kinetics database: gas-aqueous phase correlations, homologous series of various compound classes, radical reactivity comparisons, Evans-Polanyi-type correlations, and structure-activity relationships (SARs). The quality of these prediction methods was tested as well as their suitability for automated mechanism construction. Based on this evaluation, SARs form the basis of the new CAPRAM-GECKO-A protocol. Evans-Polanyi-type correlations have been advanced to consider all available H atoms in a molecule besides the H atoms with only the weakest bond dissociation enthalpies (BDEs). The improved Evans- Polanyi-type correlations are used to predict rate constants for aqueous-phase NO3 and organic compounds reactions. Extensive tests have been performed on essential parameters and on highly uncertain parameters with limited experimental data. These sensitivity studies led to further improvements in the new CAPRAM-GECKO-A protocol but also showed current limitations. Biggest uncertainties were observed in uptake processes and the estimation of Henry's law coefficients as well as radical chemistry, in particular the degradation of alkoxy radicals. Previous estimation methods showed several deficits, which impacted particle growth. For further evaluation, a 1,3,5-trimethylbenzene oxidation experiment has been performed in the aerosol chamber "Leipziger Aerosolkammer" (LEAK) at high relative humidity conditions and compared to a multiphase mechanism using the Master Chemical Mechanism (MCMv3.2) in the gas phase and using a methylglyoxal oxidation scheme of about 600 reactions generated with the new CAPRAM-GECKO-A protocol in the aqueous phase. While it was difficult to evaluate single particle constituents due to concentrations close to the detection limits of the instruments applied, the model studies showed the importance of aqueous-phase chemistry in respect to secondary organic aerosol (SOA) formation and particle growth. The new protocol forms the basis for further CAPRAM mechanism development towards a new version 4.0. Moreover, it can be used as a supplementary tool for aerosol chambers to design and analyse experiments of chemical complexity and help to understand them on a molecular level. © 2019 Author(s).
  • Item
    Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material
    (München : European Geopyhsical Union, 2016) Grayson, James W.; Zhang, Yue; Mutzel, Anke; Renbaum-Wolff, Lindsay; Böge, Olaf; Kamal, Saeid; Herrmann, Hartmut; Martin, Scot T.; Bertram, Allan K.
    Knowledge of the viscosity of particles containing secondary organic material (SOM) is useful for predicting reaction rates and diffusion in SOM particles. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration, during SOM synthesis. The SOM was generated via the ozonolysis of α-pinene at < 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time (τexp, flow) of SOM after poking the material with a needle. In the first set of experiments, we show that τexp, flow increased by a factor of 3600 as the RH increased from < 0.5 RH to 50 % RH, for SOM with a production mass concentration of 121 µg m−3. Based on simulations, the viscosities of the particles were between 6  ×  105 and 5  ×  107 Pa s at < 0.5 % RH and between 3  ×  102 and 9  ×  103 Pa s at 50 % RH. In the second set of experiments we show that under dry conditions τexp, flow decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 µg m−3. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 µg m−3 was determined to be between 4  ×  104 and 1.5  ×  106 Pa s compared to between 6  ×  105 and 5  ×  107 Pa s for SOM with a production mass concentration of 121 µg m−3. The results can be rationalized by a dependence of the chemical composition of SOM on production conditions. These results emphasize the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere.