Search Results

Now showing 1 - 2 of 2
  • Item
    Importance of secondary organic aerosol formation of iα/i-pinene, limonene, and im/i-cresol comparing day- And nighttime radical chemistry
    (Katlenburg-Lindau : European Geosciences Union, 2021) Mutzel, Anke; Zhang, Yanli; Böge, Olaf; Rodigast, Maria; Kolodziejczyk, Agata; Wang, Xinming; Herrmann, Hartmut
    The oxidation of biogenic and anthropogenic compounds leads to the formation of secondary organic aerosol mass (SOA). The present study aims to investigate span classCombining double low line"inline-formula"iα/i/span-pinene, limonene, and span classCombining double low line"inline-formula"im/i/span-cresol with regards to their SOA formation potential dependent on relative humidity (RH) under night- (NOspan classCombining double low line"inline-formula"3/span radicals) and daytime conditions (OH radicals) and the resulting chemical composition. It was found that SOA formation potential of limonene with NOspan classCombining double low line"inline-formula"3/span under dry conditions significantly exceeds that of the OH-radical reaction, with SOA yields of 15-30 % and 10-21 %, respectively. Additionally, the nocturnal SOA yield was found to be very sensitive towards RH, yielding more SOA under dry conditions. In contrast, the SOA formation potential of span classCombining double low line"inline-formula"iα/i/span-pinene with NOspan classCombining double low line"inline-formula"3/span slightly exceeds that of the OH-radical reaction, independent from RH. On average, span classCombining double low line"inline-formula"iα/i/span-pinene yielded SOA with about 6-7 % from NOspan classCombining double low line"inline-formula"3/span radicals and 3-4 % from OH-radical reaction. Surprisingly, unexpectedly high SOA yields were found for span classCombining double low line"inline-formula"im/i/span-cresol oxidation with OH radicals (3-9 %), with the highest yield under elevated RH (9 %), which is most likely attributable to a higher fraction of 3-methyl-6-nitro-catechol (MNC). While span classCombining double low line"inline-formula"iα/i/span-pinene and span classCombining double low line"inline-formula"im/i/span-cresol SOA was found to be mainly composed of water-soluble compounds, 50-68 % of nocturnal SOA and 22-39 % of daytime limonene SOA are water-insoluble. The fraction of SOA-bound peroxides which originated from span classCombining double low line"inline-formula"iα/i/span-pinene varied between 2 and 80 % as a function of RH./p pFurthermore, SOA from span classCombining double low line"inline-formula"iα/i/span-pinene revealed pinonic acid as the most important particle-phase constituent under day- and nighttime conditions with a fraction of 1-4 %. Other compounds detected are norpinonic acid (0.05-1.1 % mass fraction), terpenylic acid (0.1-1.1 % mass fraction), pinic acid (0.1-1.8 % mass fraction), and 3-methyl-1,2,3-tricarboxylic acid (0.05-0.5 % mass fraction). All marker compounds showed higher fractions under dry conditions when formed during daytime and showed almost no RH effect when formed during night./p © 2021 Copernicus GmbH. All rights reserved.
  • Item
    Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N
    (Katlenburg-Lindau : European Geosciences Union, 2021) Hartmann, Markus; Gong, Xianda; Kecorius, Simonas; van Pinxteren, Manuela; Vogl, Teresa; Welti, André; Wex, Heike; Zeppenfeld, Sebastian; Herrmann, Hartmut; Wiedensohler, Alfred; Stratmann, Frank
    Ice-nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. -38gC and have an impact on precipitation formation, cloud optical properties, and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic. We present results from a ship-based campaign to the European Arctic during May to July 2017. We deployed a filter sampler and a continuous-flow diffusion chamber for offline and online INP analyses, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water. Concentrations of INPs (NINP) in the air vary between 2 to 3 orders of magnitudes at any particular temperature and are, except for the temperatures above -10gC and below -32gC, lower than in midlatitudes. In these temperature ranges, INP concentrations are the same or even higher than in the midlatitudes. By heating of the filter samples to 95gC for 1ĝ€¯h, we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust. The SML was found to be enriched in INPs compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2ĝ€¯μm syringe filters led to a significant reduction in ice activity, indicating the INPs are larger and/or are associated with particles larger than 0.2ĝ€¯μm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed airborne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere. In the fog water samples with -3.47gC, we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events. In a case study, we considered a situation during which the ship was located in the marginal sea ice zone and NINP levels in air and the SML were highest in the temperature range above -10gC. Chlorophyll a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed airborne INP population. Therefore, we conclude that during the case study collected airborne INPs originated from a local biogenic probably marine source. © Author(s) 2021.