Search Results

Now showing 1 - 3 of 3
  • Item
    Directionality of THz emission from photoinduced gas plasmas
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Köhler, Christian; Cabrera-Granado, Eduardo; Babushkin, Ihar; Bergé, Luc; Herrmann, Joachim; Skupin, Stefan
    Forward and backward THz emission by ionizing two-color laser pulses in gas is investigated by means of a simple semi-analytical model based on Jefimenko's equation and rigorous Maxwell simulations in one and two dimensions. We find the emission in backward direction having a much smaller spectral bandwidth than in forward direction and explain this by interference effects. Forward THz radiation is generated predominantly at the ionization front and is thus almost not affected by the opacity of the plasma, in excellent agreement with results obtained from a unidirectional pulse propagation model.
  • Item
    Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Babushkin, Ihar; Kuehn, Wihelm; Köhler, Christian; Skupin, Stefan; Bergé, Luc; Reimann, Klaus; Woerner, Michael; Herrmann, Joachim; Elsaesser, Thomas
    We present a combined theoretical and experimental study of spatio-temporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatio-temporal reshaping and of a plasma-induced blue-shift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.
  • Item
    Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Babuškin, Ihar; Skupin, Stefan; Herrmann, Joachim
    The generation of THz radiation from ionizing two-color femtosecond pulses propagating in metallic hollow waveguides filled with Ar is numerically studied. We observe a strong reshaping of the low-frequency part of the spectrum. Namely, after several millimeters of propagation the spectrum is extended from hundreds of GHz up to 150 THz. For longer propagation distances, nearly single-cycle near-infrared pulses with wavelengths around 4.5 μm are obtained by appropriate spectral filtering, with an efficiency of up to 0.25 %.