Search Results

Now showing 1 - 3 of 3
  • Item
    Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging
    (London : Nature Publishing Group, 2016) Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen
    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.
  • Item
    Bessel beam CARS of axially structured samples
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.
  • Item
    Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
    (London : BioMed Central, 2016) Bocklitz, Thomas W.; Salah, Firas Subhi; Vogler, Nadine; Heuke, Sandro; Chernavskaia, Olga; Schmidt, Carsten; Waldner, Maximilian J.; Greten, Florian R.; Bräuer, Rolf; Schmitt, Michael; Stallmach, Andreas; Petersen, Iver; Popp, Jürgen
    Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.