Search Results

Now showing 1 - 2 of 2
  • Item
    The role of petrimonas mucosa ING2-E5at in mesophilic biogas reactor systems as deduced from multiomics analyses
    (Basel : MDPI AG, 2020) Maus, Irena; Tubbesing, Tom; Wibberg, Daniel; Heyer, Robert; Hassa, Julia; Tomazetto, Geizecler; Huang, Liren; Bunk, Boyke; Spröer, Cathrin; Benndorf, Dirk; Zverlov, Vladimir; Pühler, Alfred; Klocke, Michael; Sczyrba, Alexander; Schlüter, Andreas
    Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Adaptation of a microbial community to demand-oriented biological methanation
    (London : BioMed Central, 2022) Khesali Aghtaei, Hoda; Püttker, Sebastian; Maus, Irena; Heyer, Robert; Huang, Liren; Sczyrba, Alexander; Reichl, Udo; Benndorf, Dirk
    Background: Biological conversion of the surplus of renewable electricity and carbon dioxide (CO2) from biogas plants to biomethane (CH4) could support energy storage and strengthen the power grid. Biological methanation (BM) is linked closely to the activity of biogas-producing Bacteria and methanogenic Archaea. During reactor operations, the microbiome is often subject to various changes, e.g., substrate limitation or pH-shifts, whereby the microorganisms are challenged to adapt to the new conditions. In this study, various process parameters including pH value, CH4 production rate, conversion yields and final gas composition were monitored for a hydrogenotrophic-adapted microbial community cultivated in a laboratory-scale BM reactor. To investigate the robustness of the BM process regarding power oscillations, the biogas microbiome was exposed to five hydrogen (H2)-feeding regimes lasting several days. Results: Applying various “on–off” H2-feeding regimes, the CH4 production rate recovered quickly, demonstrating a significant resilience of the microbial community. Analyses of the taxonomic composition of the microbiome revealed a high abundance of the bacterial phyla Firmicutes, Bacteroidota and Thermotogota followed by hydrogenotrophic Archaea of the phylum Methanobacteriota. Homo-acetogenic and heterotrophic fermenting Bacteria formed a complex food web with methanogens. The abundance of the methanogenic Archaea roughly doubled during discontinuous H2-feeding, which was related mainly to an increase in acetoclastic Methanothrix species. Results also suggested that Bacteria feeding on methanogens could reduce overall CH4 production. On the other hand, using inactive biomass as a substrate could support the growth of methanogenic Archaea. During the BM process, the additional production of H2 by fermenting Bacteria seemed to support the maintenance of hydrogenotrophic methanogens at non-H2-feeding phases. Besides the elusive role of Methanothrix during the H2-feeding phases, acetate consumption and pH maintenance at the non-feeding phase can be assigned to this species. Conclusions: Taken together, the high adaptive potential of microbial communities contributes to the robustness of BM processes during discontinuous H2-feeding and supports the commercial use of BM processes for energy storage. Discontinuous feeding strategies could be used to enrich methanogenic Archaea during the establishment of a microbial community for BM. Both findings could contribute to design and improve BM processes from lab to pilot scale.