Search Results

Now showing 1 - 4 of 4
  • Item
    Adaptive responses of animals to climate change are most likely insufficient
    ([London] : Nature Publishing Group UK, 2019) Radchuk, Viktoriia; Reed, Thomas; Teplitsky, Céline; van de Pol, Martijn; Charmantier, Anne; Hassall, Christopher; Adamík, Peter; Adriaensen, Frank; Ahola, Markus P.; Arcese, Peter; Avilés, Jesús Miguel; Balbontin, Javier; Berg, Karl S.; Borras, Antoni; Burthe, Sarah; Clobert, Jean; Dehnhard, Nina; de Lope, Florentino; Dhondt, André A.; Dingemanse, Niels J.; Doi, Hideyuki; Eeva, Tapio; Fickel, Joerns; Filella, Iolanda; Fossøy, Frode; Goodenough, Anne E.; Hall, Stephen J. G.; Hansson, Bengt; Harris, Michael; Hasselquist, Dennis; Hickler, Thomas; Joshi, Jasmin; Kharouba, Heather; Martínez, Juan Gabriel; Mihoub, Jean-Baptiste; Mills, James A.; Molina-Morales, Mercedes; Moksnes, Arne; Ozgul, Arpat; Parejo, Deseada; Pilard, Philippe; Poisbleau, Maud; Rousset, Francois; Rödel, Mark-Oliver; Scott, David; Senar, Juan Carlos; Stefanescu, Constanti; Stokke, Bård G.; Kusano, Tamotsu; Tarka, Maja; Tarwater, Corey E.; Thonicke, Kirsten; Thorley, Jack; Wilting, Andreas; Tryjanowski, Piotr; Merilä, Juha; Sheldon, Ben C.; Pape Møller, Anders; Matthysen, Erik; Janzen, Fredric; Dobson, F. Stephen; Visser, Marcel E.; Beissinger, Steven R.; Courtiol, Alexandre; Kramer-Schadt, Stephanie
    Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. © 2019, The Author(s).
  • Item
    Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: Benchmarking for impact assessment studies
    (Bristol : IOP Publishing, 2017) Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P.O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang
    Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr−1 (1981–2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.
  • Item
    Benchmarking carbon fluxes of the ISIMIP2a biome models
    (Bristol : IOP Publishing, 2017) Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui; Piao, Shilong; Asrar, Ghassem; Betts, Richard; Chevallier, Frédéric; Dury, Marie; François, Louis; Frieler, Katja; Ros, Anselmo García Cantú; Henrot, Alexandra-Jane; Hickler, Thomas; Ito, Akihiko; Morfopoulos, Catherine; Munhoven, Guy; Nishina, Kazuya; Ostberg, Sebastian; Pan, Shufen; Peng, Shushi; Rafique, Rashid; Reyer, Christopher; Rödenbeck, Christian; Schaphoff, Sibyll; Steinkamp, Jörg; Tian, Hanqin; Viovy, Nicolas; Yang, Jia; Zeng, Ning; Zhao, Fang
    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). We evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena and F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.
  • Item
    Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)
    (München : European Geopyhsical Union, 2017) Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P.O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki
    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).