Search Results

Now showing 1 - 3 of 3
  • Item
    Development of joining methods for highly filled Graphite/PP composite based bipolar plates for fuel cells: Adhesive joining and welding
    (Melville, NY : AIP, 2019) Rzeczkowski, P.; Lucia, M.; Müller, A.; Facklam, M.; Cohnen, A.; Schäfer, P.; Hopmann, C.; Hickmann, T.; Pötschke, Petra; Krause, Beate
    Novel material solutions for bipolar plates in fuel cells require adapted ways of joining and sealing technologies. Safe and life time enduring leak-tight contacts must be achieved by automatic processes using reasonable joint forces. A proper sealing should manage such challenges as good ageing properties, excellent leaktightness, high thermal conductivity and low gas permeability. Hence in this work, adhesive bonding and welding are considered as suitable methods, which can fulfill the requirements mentioned above. Adhesive systems seem to be more easy to apply than conventional sealing (hand layed-up rubber gaskets), e.g. with automatic dispensers. Additionally, the properties of an adhesive joint can be enhanced by a process-specific surface pre-treatment. This work focuses on the characterization of adhesive systems and their joints with highly filled graphite composites. Mechanical properties of the joints were characterized through lap-shear tests. The influence of ageing caused by humidity or acidic solvent at increased temperature on the bond line properties as well as neat adhesive was examined. The thermal conductivities of neat adhesives and through the entire joint were examined. In order to improve above conductivities, roughening, substrate pre-heating, post-curing and various contact pressure weights were applied. Plasma treatment was chosen as surface pre-treatment method for improving substrate's surface energy. An alternative to bonding is plastic welding, which does not require the use of sealants and adhesives. Based on former study of influences of filler content on the welding process using ultrasonic, hot plate or infrared welding, a welding method for joining the graphite compounds was derived.
  • Item
    Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites
    (Melville, NY : AIP, 2017) Krause, Beate; Cohnen, A.; Pötschke, Petra; Hickmann, T.; Koppler, D.; Proksch, B.; Kersting, T.; Hopmann, C.
    In this study, composites based on polypropylene (PP) and different graphite fillers were melt mixed using small scale microcompounder Xplore DSM15 as well as lab-scale co-rotating twin screw extruder Coperion ZSK26Mc. The measurements of the electrical and thermal conductivity as well as mechanical properties of the composites were performed on pressed plates. It was found that the addition of graphite powders having different particle size distributions leads to different increases of the thermal conductivity. For synthetic graphite, the PP composites filled with TIMCAL Timrex® KS500 reached the highest value of thermal conductivity of 0.52 W/(m·K) at 10 vol% loading, whereas this composite was not electrical conductive. Furthermore, the influence of a styrene-ethylene-butylene-styrene block copolymer (SEBS) based impact modifier on the mechanical properties of PP filled with 80 wt% of different synthetic graphites was investigated. For that the proportion of SEBS in the PP component was varied systematically. The conductivities were influenced by the type of graphite and the content of impact modifier. The results indicate that the impact strength of the composite containing TIMCAL Timrex® KS300-1250 can be increased by approx. 100 % when replacing 50 wt% of the PP component by SEBS.
  • Item
    Development of a polymer composite with high electrical conductivity and improved impact strength for the application as bipolar plate
    (Melville, NY : AIP, 2016) Hopmann, C.; Windeck, C.; Cohnen, A.; Onken, J.; Krause, Beate; Pötschke, Petra; Hickmann, T.
    Bipolar plates constitute the most important structural component in fuel cell stacks. Highly filled thermoplastic composites with high electrical conductivity obtain an increasing importance in the design of bipolar plates as alternative to conventional metallic systems. Thermoplastics (e.g. PP) have suitable properties such as a good processability, chemical resistance, light weight and low production costs. As thermoplastics have low electrical conductivities, conductive fillers have to be included in the matrix. A high content of such fillers (e.g. graphite) in excess of 80 wt.-% is necessary to achieve the desired electrical properties. However, materials with such high filler contents embrittle readily. The workability in injection and compression molding is difficult and the mechanical stability is insufficient in case of strain deformation. As consequence, material failure and an inacceptable amount of damaged goods can be observed during the processing. As no suitable thermoplastic system is available for better mechanical properties, the induction and dispersion of a rubber phase in the thermoplastic matrix can be used to increase the impact strength of the conductive composite. In this research work a ternary composite, based on PP as matrix, EPDM as impact modifier and synthetic graphite as conductive filler, was developed. The material was produced using a 26 mm co-rotating, intermeshing twin-screw extruder. The amounts of PP, EPDM and graphite were varied systematically and a process window was defined that enables improved impact strength and high electrical conductivity of the new material. The results indicate that impact strength can be enhanced by about 99 % with an EPDM content of 30 wt.-% in the PP matrix. The electrical conductivity decreases in a small range with increasing content of EPDM, but the conductivity is still excellent for producing bipolar plates.