Search Results

Now showing 1 - 2 of 2
  • Item
    Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications
    (Cambridge : RSC Publ., 2019) Sonntag, Luisa; Shamraienko, Volodymyr; Fan, Xuelin; Samadi Khoshkhoo, Mahdi; Kneppe, David; Koitzsch, Andreas; Gemming, Thomas; Hiekel, Karl; Leo, Karl; Lesnyak, Vladimir; Eychmüller, Alexander
    In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V−1 s−1.
  • Item
    Voltage-Controlled ON-OFF-Switching of Magnetoresistance in FeOx/Fe/Au Aerogel Networks
    (Washington, DC : ACS Publications, 2023) Nichterwitz, Martin; Hiekel, Karl; Wolf, Daniel; Eychmüller, Alexander; Leistner, Karin
    Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel). To enable maximum magneto-ionic ON-OFF-switching, the thickness of the coating is adjusted to a few nanometers by a self-terminating electrodeposition process. In situ magnetotransport measurements during electrolytic gating of these nanostructures reveal large reversible changes in MR, including ON-OFF-switching of MR, with a small applied voltage difference (1.72 V). This effect is related to the electrochemical switching between a ferromagnetic iron shell/gold core nanostructure (negative MR at the reduction voltage) and an iron oxide shell/gold core nanostructure (negligible MR at the oxidation voltage).