Search Results

Now showing 1 - 10 of 13
  • Item
    Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Smith, Steven J.; Chateau, Jean; Dorheim, Kalyn; Drouet, Laurent; Durand-Lasserve, Olivier; Fricko, Oliver; Fujimori, Shinichiro; Hanaoka, Tatsuya; Harmsen, Mathijs; Hilaire, Jérôme; Keramidas, Kimon; Klimont, Zbigniew; Luderer, Gunnar; Moura, Maria Cecilia P.; Riahi, Keywan; Rogelj, Joeri; Sano, Fuminori; van Vuuren, Detlef P.; Wada, Kenichi
    The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.
  • Item
    Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Harmsen, Mathijs; Fricko, Oliver; Hilaire, Jérôme; van Vuuren, Detlef P.; Drouet, Laurent; Durand-Lasserve, Olivier; Fujimori, Shinichiro; Keramidas, Kimon; Klimont, Zbigniew; Luderer, Gunnar; Aleluia Reis, Lara; Riahi, Keywan; Sano, Fuminori; Smith, Steven J.
    Several studies have shown that the greenhouse gas reduction resulting from the current nationally determined contributions (NDCs) will not be enough to meet the overall targets of the Paris Climate Agreement. It has been suggested that more ambition mitigations of short-lived climate forcer (SLCF) emissions could potentially be a way to reduce the risk of overshooting the 1.5 or 2 °C target in a cost-effective way. In this study, we employ eight state-of-the-art integrated assessment models (IAMs) to examine the global temperature effects of ambitious reductions of methane, black and organic carbon, and hydrofluorocarbon emissions. The SLCFs measures considered are found to add significantly to the effect of the NDCs on short-term global mean temperature (GMT) (in the year 2040: − 0.03 to − 0.15 °C) and on reducing the short-term rate-of-change (by − 2 to 15%), but only a small effect on reducing the maximum temperature change before 2100. This, because later in the century under assumed ambitious climate policy, SLCF mitigation is maximized, either directly or indirectly due to changes in the energy system. All three SLCF groups can contribute to achieving GMT changes. © 2019, The Author(s).
  • Item
    Negative emissions and international climate goals—learning from and about mitigation scenarios
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Hilaire, Jérôme; Minx, Jan C.; Callaghan, Max W.; Edmonds, Jae; Luderer, Gunnar; Nemet, Gregory F.; Rogelj, Joeri; del Mar Zamora, Maria
    For aiming to keep global warming well-below 2 °C and pursue efforts to limit it to 1.5 °C, as set out in the Paris Agreement, a full-fledged assessment of negative emission technologies (NETs) that remove carbon dioxide from the atmosphere is crucial to inform science-based policy making. With the Paris Agreement in mind, we re-analyse available scenario evidence to understand the roles of NETs in 1.5 °C and 2 °C scenarios and, for the first time, link this to a systematic review of findings in the underlying literature. In line with previous research, we find that keeping warming below 1.5 °C requires a rapid large-scale deployment of NETs, while for 2 °C, we can still limit NET deployment substantially by ratcheting up near-term mitigation ambition. Most recent evidence stresses the importance of future socio-economic conditions in determining the flexibility of NET deployment and suggests opportunities for hedging technology risks by adopting portfolios of NETs. Importantly, our thematic review highlights that there is a much richer set of findings on NETs than commonly reflected upon both in scientific assessments and available reviews. In particular, beyond the common findings on NETs underpinned by dozens of studies around early scale-up, the changing shape of net emission pathways or greater flexibility in the timing of climate policies, there is a suite of “niche and emerging findings”, e.g. around innovation needs and rapid technological change, termination of NETs at the end of the twenty-first century or the impacts of climate change on the effectiveness of NETs that have not been widely appreciated. Future research needs to explore the role of climate damages on NET uptake, better understand the geophysical constraints of NET deployment (e.g. water, geological storage, climate feedbacks), and provide a more systematic assessment of NET portfolios in the context of sustainable development goals. © 2019, The Author(s).
  • Item
    The role of methane in future climate strategies: mitigation potentials and climate impacts
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Harmsen, Mathijs; Mathijs, Detlef P.; Bodirsky, Benjamin Leon; Chateau, Jean; Durand-Lasserve, Olivier; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David E.H.J.; Hanaoka, Tatsuya; Hilaire, Jérôme; Keramidas, Kimon; Luderer, Gunnar; Moura, Maria Cecilia P.; Sano, Fuminori; Smith, Steven J.; Wada, Kenichi
    This study examines model-specific assumptions and projections of methane (CH4) emissions in deep mitigation scenarios generated by integrated assessment models (IAMs). For this, scenarios of nine models are compared in terms of sectoral and regional CH4 emission reduction strategies, as well as resulting climate impacts. The models’ projected reduction potentials are compared to sector and technology-specific reduction potentials found in literature. Significant cost-effective and non-climate policy related reductions are projected in the reference case (10–36% compared to a “frozen emission factor” scenario in 2100). Still, compared to 2010, CH4 emissions are expected to rise steadily by 9–72% (up to 412 to 654 Mt CH4/year). Ambitious CO2 reduction measures could by themselves lead to a reduction of CH4 emissions due to a reduction of fossil fuels (22–48% compared to the reference case in 2100). However, direct CH4 mitigation is crucial and more effective in bringing down CH4 (50–74% compared to the reference case). Given the limited reduction potential, agriculture CH4 emissions are projected to constitute an increasingly larger share of total anthropogenic CH4 emissions in mitigation scenarios. Enteric fermentation in ruminants is in that respect by far the largest mitigation bottleneck later in the century with a projected 40–78% of total remaining CH4 emissions in 2100 in a strong (2 °C) climate policy case. © 2019, The Author(s).
  • Item
    Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century
    (Katlenburg-Lindau : Copernicus, 2019) Gidden, Matthew J.; Riahi, Keywan; Smith, Steven J.; Fujimori, Shinichiro; Luderer, Gunnar; Kriegler, Elmar; van Vuuren, Detlef P.; van den Berg, Maarten; Feng, Leyang; Klein, David; Calvin, Katherine; Doelman, Jonathan C.; Frank, Stefan; Fricko, Oliver; Harmsen, Mathijs; Hasegawa, Tomoko; Havlik, Petr; Hilaire, Jérôme; Hoesly, Rachel; Horing, Jill; Popp, Alexander; Stehfest, Elke; Takahashi, Kiyoshi
    We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario
  • Item
    Energy system developments and investments in the decisive decade for the Paris Agreement goals
    (Bristol : IOP Publ., 2021-6-29) Bertram, Christoph; Riahi, Keywan; Hilaire, Jérôme; Bosetti, Valentina; Drouet, Laurent; Fricko, Oliver; Malik, Aman; Pupo Nogueira, Larissa; van der Zwaan, Bob; van Ruijven, Bas; van Vuuren, Detlef; Weitzel, Matthias; Dalla Longa, Francesco; de Boer, Harmen-Sytze; Emmerling, Johannes; Fosse, Florian; Fragkiadakis, Kostas; Harmsen, Mathijs; Keramidas, Kimon; Kishimoto, Paul Natsuo; Kriegler, Elmar; Krey, Volker; Paroussos, Leonidas; Saygin, Deger; Vrontisi, Zoi; Luderer, Gunnar
    The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
  • Item
    Future air pollution in the Shared Socio-economic Pathways
    (Amsterdam : Elsevier, 2016) Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David; Havlik, Petr; Harmsen, Mathijs; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, Massimo
    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.
  • Item
    Air quality co-benefits of ratcheting up the NDCs
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Rauner, Sebastian; Hilaire, Jérôme; Klein, David; Strefler, Jessica; Luderer, Gunnar
    The current nationally determined contributions, pledged by the countries under the Paris Agreement, are far from limiting climate change to below 2 ∘C temperature increase by the end of the century. The necessary ratcheting up of climate policy is projected to come with a wide array of additional benefits, in particular a reduction of today’s 4.5 million annual premature deaths due to poor air quality. This paper therefore addresses the question how climate policy and air pollution–related health impacts interplay until 2050 by developing a comprehensive global modeling framework along the cause and effect chain of air pollution–induced social costs. We find that ratcheting up climate policy to a 2 ∘ compliant pathway results in welfare benefits through reduced air pollution that are larger than mitigation costs, even with avoided climate change damages neglected. The regional analysis demonstrates that the 2 ∘C pathway is therefore, from a social cost perspective, a “no-regret option” in the global aggregate, but in particular for China and India due to high air quality benefits, and also for developed regions due to net negative mitigation costs. Energy and resource exporting regions, on the other hand, face higher mitigation cost than benefits. Our analysis further shows that the result of higher health benefits than mitigation costs is robust across various air pollution control scenarios. However, although climate mitigation results in substantial air pollution emission reductions overall, we find significant remaining emissions in the transport and industry sectors even in a 2 ∘C world. We therefore call for further research in how to optimally exploit climate policy and air pollution control, deriving climate change mitigation pathways that maximize co-benefits. © 2020, The Author(s).
  • Item
    Short term policies to keep the door open for Paris climate goals
    (Bristol : IOP Publ., 2018) Kriegler, Elmar; Bertram, Christoph; Kuramochi, Takeshi; Jakob, Michael; Pehl, Michaja; Stevanović, Miodrag; Höhne, Niklas; Luderer, Gunnar; Minx, Jan C; Fekete, Hanna; Hilaire, Jérôme; Luna, Lisa; Popp, Alexander; Steckel, Jan Christoph; Sterl, Sebastian; Yalew, Amsalu Woldie; Dietrich, Jan Philipp; Edenhofer, Ottmar
    Climate policy needs to account for political and social acceptance. Current national climate policy plans proposed under the Paris Agreement lead to higher emissions until 2030 than cost-effective pathways towards the Agreements' long-term temperature goals would imply. Therefore, the current plans would require highly disruptive changes, prohibitive transition speeds, and large long-term deployment of risky mitigation measures for achieving the agreement's temperature goals after 2030. Since the prospects of introducing the cost-effective policy instrument, a global comprehensive carbon price in the near-term, are negligible, we study how a strengthening of existing plans by a global roll-out of regional policies can ease the implementation challenge of reaching the Paris temperature goals. The regional policies comprise a bundle of regulatory policies in energy supply, transport, buildings, industry, and land use and moderate, regionally differentiated carbon pricing. We find that a global roll-out of these policies could reduce global CO2 emissions by an additional 10 GtCO2eq in 2030 compared to current plans. It would lead to emissions pathways close to the levels of cost-effective likely below 2 °C scenarios until 2030, thereby reducing implementation challenges post 2030. Even though a gradual phase-in of a portfolio of regulatory policies might be less disruptive than immediate cost-effective carbon pricing, it would perform worse in other dimensions. In particular, it leads to higher economic impacts that could become major obstacles in the long-term. Hence, such policy packages should not be viewed as alternatives to carbon pricing, but rather as complements that provide entry points to achieve the Paris climate goals.