Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis

2020, Smith, Steven J., Chateau, Jean, Dorheim, Kalyn, Drouet, Laurent, Durand-Lasserve, Olivier, Fricko, Oliver, Fujimori, Shinichiro, Hanaoka, Tatsuya, Harmsen, Mathijs, Hilaire, Jérôme, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Moura, Maria Cecilia P., Riahi, Keywan, Rogelj, Joeri, Sano, Fuminori, van Vuuren, Detlef P., Wada, Kenichi

The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.

Loading...
Thumbnail Image
Item

Negative emissions—Part 2: Costs, potentials and side effects

2018, Fuss, Sabine, Lamb, William F., Callaghan, Max W., Hilaire, Jérôme, Creutzig, Felix, Amann, Thorben, Beringer, Tim, de Oliveira Garcia, Wagner, Hartmann, Jens, Khanna, Tarun, Luderer, Gunnar, Nemet, Gregory F., Rogelj, Joeri, Smith, Pete, Vicente Vicente, José Luis, Wilcox, Jennifer, del Mar Zamora Dominguez, Maria, Minx, Jan C.

The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO2 yr−1 for afforestation and reforestation, 0.5–5 GtCO2 yr−1 for BECCS, 0.5–2 GtCO2 yr−1 for biochar, 2–4 GtCO2 yr−1 for enhanced weathering, 0.5–5 GtCO2 yr−1 for DACCS, and up to 5 GtCO2 yr−1 for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.

Loading...
Thumbnail Image
Item

Negative emissions and international climate goals—learning from and about mitigation scenarios

2019, Hilaire, Jérôme, Minx, Jan C., Callaghan, Max W., Edmonds, Jae, Luderer, Gunnar, Nemet, Gregory F., Rogelj, Joeri, del Mar Zamora, Maria

For aiming to keep global warming well-below 2 °C and pursue efforts to limit it to 1.5 °C, as set out in the Paris Agreement, a full-fledged assessment of negative emission technologies (NETs) that remove carbon dioxide from the atmosphere is crucial to inform science-based policy making. With the Paris Agreement in mind, we re-analyse available scenario evidence to understand the roles of NETs in 1.5 °C and 2 °C scenarios and, for the first time, link this to a systematic review of findings in the underlying literature. In line with previous research, we find that keeping warming below 1.5 °C requires a rapid large-scale deployment of NETs, while for 2 °C, we can still limit NET deployment substantially by ratcheting up near-term mitigation ambition. Most recent evidence stresses the importance of future socio-economic conditions in determining the flexibility of NET deployment and suggests opportunities for hedging technology risks by adopting portfolios of NETs. Importantly, our thematic review highlights that there is a much richer set of findings on NETs than commonly reflected upon both in scientific assessments and available reviews. In particular, beyond the common findings on NETs underpinned by dozens of studies around early scale-up, the changing shape of net emission pathways or greater flexibility in the timing of climate policies, there is a suite of “niche and emerging findings”, e.g. around innovation needs and rapid technological change, termination of NETs at the end of the twenty-first century or the impacts of climate change on the effectiveness of NETs that have not been widely appreciated. Future research needs to explore the role of climate damages on NET uptake, better understand the geophysical constraints of NET deployment (e.g. water, geological storage, climate feedbacks), and provide a more systematic assessment of NET portfolios in the context of sustainable development goals. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Negative emissions—Part 1: Research landscape and synthesis

2018, Minx, Jan C., Lamb, William F., Callaghan, Max W., Fuss, Sabine, Hilaire, Jérôme, Creutzig, Felix, Amann, Thorben, Beringer, Tim, de Oliveira Garcia, Wagner, Hartmann, Jens, Khanna, Tarun, Lenzi, Dominic, Luderer, Gunnar, Nemet, Gregory F., Rogelj, Joeri, Smith, Pete, Vicente Vicente, José Luis, Wilcox, Jennifer, del Mar Zamora Dominguez, Maria

With the Paris Agreement's ambition of limiting climate change to well below 2 °C, negative emission technologies (NETs) have moved into the limelight of discussions in climate science and policy. Despite several assessments, the current knowledge on NETs is still diffuse and incomplete, but also growing fast. Here, we synthesize a comprehensive body of NETs literature, using scientometric tools and performing an in-depth assessment of the quantitative and qualitative evidence therein. We clarify the role of NETs in climate change mitigation scenarios, their ethical implications, as well as the challenges involved in bringing the various NETs to the market and scaling them up in time. There are six major findings arising from our assessment: first, keeping warming below 1.5 °C requires the large-scale deployment of NETs, but this dependency can still be kept to a minimum for the 2 °C warming limit. Second, accounting for economic and biophysical limits, we identify relevant potentials for all NETs except ocean fertilization. Third, any single NET is unlikely to sustainably achieve the large NETs deployment observed in many 1.5 °C and 2 °C mitigation scenarios. Yet, portfolios of multiple NETs, each deployed at modest scales, could be invaluable for reaching the climate goals. Fourth, a substantial gap exists between the upscaling and rapid diffusion of NETs implied in scenarios and progress in actual innovation and deployment. If NETs are required at the scales currently discussed, the resulting urgency of implementation is currently neither reflected in science nor policy. Fifth, NETs face severe barriers to implementation and are only weakly incentivized so far. Finally, we identify distinct ethical discourses relevant for NETs, but highlight the need to root them firmly in the available evidence in order to render such discussions relevant in practice.