Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of substrate dimensionality on the growth mode of epitaxial 3D-bonded GeTe thin films: From 3D to 2D growth
    (Amsterdam [u.a.] : Elsevier Science, 2019) Hilmi, Isom; Lotnyk, Andriy; Gerlach, Jürgen W.; Schumacher, Philipp; Rauschenbach, Bernd
    The pseudo-binary line of Sb2Te3-GeTe contains alloys featuring different crystalline characteristics from two-dimensionally (2D-) bonded Sb2Te3 to three-dimensionally (3D-) bonded GeTe. Here, the growth scenario of 3D-bonded GeTe is investigated by depositing epitaxial GeTe thin films on Si(111) and Sb2Te3-buffered Si(111) substrates using pulsed laser deposition (PLD). GeTe thin films were grown in trigonal structure within a temperature window for epitaxial growth of 210–270 °C on unbuffered Si(111) substrates. An unconventional growth onset was characterized by the formation of a thin amorphous GeTe layer. Nonetheless, the as-grown film is found to be crystalline. Furthermore, by employing a 2D-bonded Sb2Te3 thin film as a seeding layer on Si(111), a 2D growth of GeTe is harnessed. The epitaxial window can substantially be extended especially towards lower temperatures down to 145 °C. Additionally, the surface quality is significantly improved. The inspection of the local structure of the epitaxial films reveals the presence of a superposition of twinned domains, which is assumed to be an intrinsic feature of such thin films. This work might open a way for an improvement of an epitaxy of a 3D-bonded material on a highly-mismatched substrate (e.g. Si (111)) by employing a 2D-bonded seeding layer (e.g. Sb2Te3).
  • Item
    Research Update: Van-der-Waals epitaxy of layered chalcogenide Sb2Te3 thin films grown by pulsed laser deposition
    (Melville, NY : AIP Publ., 2017) Hilmi, Isom; Lotnyk, Andriy; Gerlach, Jürgen W.; Schumacher, Philipp; Rauschenbach, Bernd
    An attempt to deposit a high quality epitaxial thin film of a two-dimensionally bonded (layered) chalcogenide material with van-der-Waals (vdW) epitaxy is of strong interest for non-volatile memory application. In this paper, the epitaxial growth of an exemplary layered chalcogenide material, i.e., stoichiometric Sb2Te3 thin films, is reported. The films were produced on unreconstructed highly lattice-mismatched Si(111) substrates by pulsed laser deposition (PLD). The films were grown by vdW epitaxy in a two-dimensional mode. X-ray diffraction measurements and transmission electron microscopy revealed that the films possess a trigonal Sb2Te3 structure. The single atomic Sb/Te termination layer on the Si surface was formed initializing the thin film growth. This work demonstrates a straightforward method to deposit vdW-epitaxial layered chalcogenides and, at the same time, opens up the feasibility to fabricate chalcogenide vdW heterostructures by PLD.