Search Results

Now showing 1 - 4 of 4
  • Item
    Probing carbonyl-water hydrogen-bond interactions in thin polyoxazoline brushes
    (Melville, NY : AIP Publishing, 2016) Kroning, Annika; Furchner, Andreas; Adam, Stefan; Uhlmann, Petra; Hinrichs, Karsten
    Temperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule–solvent interactions and results in a switching of the brushes between swollen and collapsed states. This work studies the temperature-dependent interactions between poly(2-oxazoline) brushes and water. In detail, thermoresponsive poly(2-cyclopropyl-2-oxazoline), nonresponsive hydrophilic poly(2-methyl-2-oxazoline), as well as a copolymer of the two were investigated with in situ infrared ellipsometry. Focus was put on interactions of the brushes' carbonyl groups with water molecules. Different polymer–water interactions could be observed and assigned to hydrogen bonding between C=O groups and water molecules. The switching behavior of the brushes in the range of 20–45 °C was identified by frequency shifts and intensity changes of the amide I band.
  • Item
    Fast IR laser mapping ellipsometry for the study of functional organic thin films
    (Cambridge : Royal Society of Chemistry, 2015) Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten
    Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm−1, was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.
  • Item
    Infrared ellipsometric study of hydrogen-bonded long-chain thiolates on gold: Towards resolving structural details
    (Basel : MDPI, 2011) Tsankov, Dimiter; Philipova, Irena; Kostova, Kalina; Hinrichs, Karsten
    A set of newly synthesized aryl-substituted amides of 16-mercaptohexadecanoic acid (R = 4-OH; 3,5-di-OH) are self-assembled on Au(111) substrate. Self assembled monolayers (SAMs) formed by these molecules are studied by ellipsometry from infrared to visible spectral range. Best fit calculations based on the three-phase optical model are employed in order to determine the average tilt angle of the hydrocarbon chains. The data revealed that the SAMs reside in a crystalline-like environment as the long methylene chains predominantly exist in all-trans conformation. The calculated tilt angle of the hydrocarbon chain is decreased by approximately 12° in comparison with the one for the correspondent long-chain n-alkyl thiols. Strong hydrogen bonded networks were detected between the amide proton and the carbonyl oxygen as well as between hydroxyl groups in the end aryl substituents. The transition dipole moments of the C=O, N-H and O-H modes are oriented almost parallel to the gold surface.
  • Item
    Crosspolarization with imperfect infrared polarizers
    (Amsterdam [u.a.] Elsevier, 2022) Furchner, Andreas; Hinrichs, Karsten
    The analysis of vibrational bands is a core application of infrared (IR) spectroscopy. Polarization-dependent measurements enable the study of anisotropic materials. However, imperfect IR polarizers exhibit polarizer leakage, which causes pronounced bandshape and baseline distortions for samples with weak optical anisotropy. Based on the 4 × 4 Mueller-matrix formalism, we propose a polarimetric measurement scheme for handling imperfect polarizers and source prepolarization that delivers correct co- and crosspolarized transmission and reflection IR spectra. The scheme is applied to a weakly anisotropic polypropylene sheet, resolving crosspolarized signatures as small as 5⋅10−5. We determine the polymer's direction-dependent complex refractive index in the vibrational fingerprint range.