Search Results

Now showing 1 - 7 of 7
  • Item
    Stability of the solution set of quasi-variational inequalities and optimal control
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution set and associated optimal control problems are considered. These optimal control problems are non-standard in the sense that they involve an objective with set-valued arguments. The approach to study the solution stability is based on perturbations of minimal and maximal elements to the solution set of the QVI with respect to monotonic perturbations of the forcing term. It is shown that different assumptions are required for studying decreasing and increasing perturbations and that the optimization problem of interest is well-posed.
  • Item
    A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard-Navier-Stokes system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Hintermüller, Michael; Hinze, Michael; Kahle, Christian; Tobias, Keil
    This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a time-discrete Cahn-Hilliard-Navier-Stokes system with variable densities. The free energy density associated to the Cahn-Hilliard system incorporates the double-obstacle potential which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the Navier-Stokes equation. A dual-weighted residual approach for goal-oriented adaptive finite elements is presented which is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Details on the numerical realization of the adaptive concept and a report on numerical tests are given.
  • Item
    Optimal control of geometric partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hintermüller, Michael; Keil, Tobias
    Optimal control problems for geometric (evolutionary) partial differential inclusions are considered. The focus is on problems which, in addition to the nonlinearity due to geometric evolution, contain optimization theoretic challenges because of non-smoothness. The latter might stem from energies containing non-smooth constituents such as obstacle-type potentials or terms modeling, e.g., pinning phenomena in microfluidics. Several techniques to remedy the resulting constraint degeneracy when deriving stationarity conditions are presented. A particular focus is on Yosida-type mollifications approximating the original degenerate problem by a sequence of nondegenerate nonconvex optimal control problems. This technique is also the starting point for the development of numerical solution schemes. In this context, also dual-weighted residual based error estimates are addressed to facilitate an adaptive mesh refinement. Concerning the underlying state model, sharp and diffuse interface formulations are discussed. While the former always allows for accurately tracing interfacial motion, the latter model may be dictated by the underlying physical phenomenon, where near the interface mixed phases may exist, but it may also be used as an approximate model for (sharp) interface motion. In view of the latter, (sharp interface) limits of diffuse interface models are addressed. For the sake of presentation, this exposition confines itself to phase field type diffuse interface models and, moreover, develops the optimal control of either of the two interface models along model applications. More precisely, electro-wetting on dielectric is used in the sharp interface context, and the control of multiphase fluids involving spinodal decomposition highlights the phase field technique. Mathematically, the former leads to a Hele-Shaw flow with geometric boundary conditions involving a complementarity system due to contact line pinning, and the latter gives rise to a Cahn-Hilliard Navier-Stokes model including a non-smooth obstacle type potential leading to a variational inequality constraint.
  • Item
    Strong stationarity conditions for the optimal control of a Cahn--Hilliard--Navier--Stokes system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hintermüller, Michael; Keil, Tobias
    This paper is concerned with the distributed optimal control of a time-discrete Cahn-Hilliard-Navier-Stokes system with variable densities. It focuses on the double-obstacle potential which yields an optimal control problem for a variational inequality of fourth order and the Navier-Stokes equation. The existence of solutions to the primal system and of optimal controls is established. The Lipschitz continuity of the constraint mapping is derived and used to characterize the directional derivative of the constraint mapping via a system of variational inequalities and partial differential equations. Finally, strong stationarity conditions are presented following an approach from Mignot and Puel.
  • Item
    First-order conditions for the optimal control of learning-informed nonsmooth PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Dong, Guozhi; Hintermüller, Michael; Papafitsoros, Kostas; Völkner, Kathrin
    In this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.
  • Item
    Optimal control and directional differentiability for elliptic quasi-variational inequalities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of results on the existence of solutions, directional differentiability and optimal control of such QVIs. We give three existence theorems based on an order approach, an iteration scheme and a sequential regularisation through partial differential equations. We show that the solution map taking the source term into the set of solutions of the QVI is directionally differentiable for general unsigned data, thereby extending the results of our previous work which provided a first differentiability result for QVIs in infinite dimensions. Optimal control problems with QVI constraints are also considered and we derive various forms of stationarity conditions for control problems, thus supplying among the first such results in this area.
  • Item
    Simulation and control of a nonsmooth Cahn--Hilliard Navier--Stokes system with variable fluid densities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Gräßle, Carmen; Hintermüller, Michael; Hinze, Michael; Keil, Tobias
    We are concerned with the simulation and control of a two phase flow model governed by a coupled Cahn--Hilliard Navier--Stokes system involving a nonsmooth energy potential.We establish the existence of optimal solutions and present two distinct approaches to derive suitable stationarity conditions for the bilevel problem, namely C- and strong stationarity. Moreover, we demonstrate the numerical realization of these concepts at the hands of two adaptive solution algorithms relying on a specifically developed goal-oriented error estimator.In addition, we present a model order reduction approach using proper orthogonal decomposition (POD-MOR) in order to replace high-fidelity models by low order surrogates. In particular, we combine POD with space-adapted snapshots and address the challenges which are the consideration of snapshots with different spatial resolutions and the conservation of a solenoidal property.