Search Results

Now showing 1 - 3 of 3
  • Item
    Climatology of northern polar latitude MLT dynamics: Mean winds and tides
    (Göttingen : Copernicus, 2010) Kumar, G.K.; Hocking, W.K.
    Mean winds and tides in the northern polar Mesosphere and Lower Thermosphere (MLT) have been studied using meteor radars located at Resolute Bay (75° N, 95° W) and Yellowknife (62.5° N, 114.3° W). The measurements for Resolute Bay span almost 12 years from July 1997 to February 2009 and the Yellowknife data cover 7 years from June 2002 to October 2008. The analysis reveals similar wind flow over both sites with a difference in magnitude. The summer zonal flow is westward at lower heights, eastward at upper heights and the winter zonal flow is eastward at all heights. The winter meridional flow is poleward and sometimes weakly equatorward, while non winter months show equatorward flow, with a strong equatorward jet during mid-summer months. The zonal and meridional winds show strong interannual variation with a dominant annual variation as well as significant latitudinal variation. Year to year variability in both zonal and meridional winds exists, with a possible solar cycle dependence. The diurnal, semidiurnal and terdiurnal tides also show large interannual variability and latitudinal variation. The diurnal amplitudes are dominated by an annual variation. The climatological monthly mean winds are compared with CIRA 86, GEWM and HWM07 and the climatological monthly mean amplitudes and phases of diurnal and semidiurnal tides are compared with GSWM00 predictions. The GEWM shows better agreement with observations than the CIRA 86 and HWM07. The GSWM00 model predictions need to be modified above 90 km. The agreements and disagreements between observations and models are discussed. © 2010 Author(s).
  • Item
    Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica
    (München : European Geopyhsical Union, 2008) Latteck, R.; Singer, W.; Morris, R.J.; Hocking, W.K.; Murphy, D.J.; Holdsworth, D.A.; Swarnalingam, N.
    Polar Mesosphere Summer Echoes (PMSE) have been observed in the high latitudes of the Northern and Southern Hemisphere for several years using VHF radars located at Andenes/Norway (69° N, 16° E), Resolute Bay/Canada (75° N, 95° W), and Davis/Antarctica (69° S, 78° E). The VHF radars at the three sites were calibrated using the same methods (noise source and delayed transmitting signal) and identical equipment. Volume reflectivity was derived from the calibrated echo power and the characteristics of the seasonal variation of PMSE were estimated at the sites for the years 2004 to 2007. The largest peak volume reflectivity of about 2×10−9 m−1 was observed at Andenes compared with their counterparts at Davis (~4×10−11 m−1) and Resolute Bay (~6×10−12 m−1). The peak of the PMSE height distribution is 85.6 km at Davis which is about 1 km higher than at Andenes. At Resolute Bay the height distribution peaks at about 85 km but only a few layers were found below 84 km. The mean PMSE occurrence rate is 83% at Andenes, 38% at Davis with larger variability and only 18% at Resolute Bay (in late summer). The duration of the PMSE season varies at Andenes from 104 to 113 days and at Davis from 88 to 93 days. In general the PMSE seasons starts about 5 days later at Davis and ends about 10 days earlier compared to Andenes. In all three seasons the PMSE occurrence suddenly drops to a much lower level at Davis about 32 days after solstice whereas the PMSE season decays smoothly at Andenes. The duration of the PMSE season at Andenes and Davis is highly correlated with the presence of equatorward directed winds, the observed differences in PMSE occurrence are related to the mesospheric temperatures at both sites.
  • Item
    Radar Observation of Extreme Vertical Drafts in the Polar Summer Mesosphere
    (Hoboken, NJ : Wiley, 2021) Chau, J.L.; Marino, R.; Feraco, F.; Urco, J.M.; Baumgarten, G.; Lübken, F.‐J.; Hocking, W.K.; Schult, C.; Renkwitz, T.; Latteck, R.
    The polar summer mesosphere is the Earth's coldest region, allowing the formation of mesospheric ice clouds. These ice clouds produce strong polar mesospheric summer echoes (PMSE) that are used as tracers of mesospheric dynamics. Here, we report the first observations of extreme vertical drafts (+/-50 ms [hoch]-1) in the mesosphere obtained from PMSE, characterized by velocities more than five standard deviations larger than the observed vertical wind variability. Using aperture synthesis radar imaging, the observed PMSE morphology resembles a solitary wave in a varicose mode, narrow along propagation (3–4 km) and elongated (>10 km) transverse to propagation direction, with a relatively large vertical extent (~13 km). These spatial features are similar to previously observed mesospheric bores, but we observe only one crest with much larger vertical extent and higher vertical velocities.