Search Results

Now showing 1 - 3 of 3
  • Item
    Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Althausen, Dietrich; Hofer, Julian; Abdullaev, Sabur; Makhmudov, Abduvosit; Baars, Holger; Engelmann, Ronny; Wadinga Fomba, Khanneh; Müller, Konrad; Schettler, Georg; Klüser, Lars; Kandler, Konrad; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.
  • Item
    Mineral dust in central Asia: 18-month lidar measurements in Tajikistan during the central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit; Nazarov, Bakhron I.; Schettler, Georg; Fomba, K.Wadinga; Müller, Konrad; Heinold, Bernd; Baars, Holger; Engelmann, Ronny; Ansmann, Albert; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.
  • Item
    Variations of the aerosol chemical composition during Asian dust storm at Dushanbe, Tajikistan
    (Les Ulis : EDP Sciences, 2019) Fomba, Khanneh Wadinga; Müller, Konrad; Hofer, Julian; Makhmudov, Abduvosit N.; Althausen, Dietrich; Nazarov, Bahron I.; Abdullaev, Sabur F.; Herrmann, Hartmut
    Aerosol chemical composition was characterized during the Central Asian Dust Experiment (CADEX) at Dushanbe (Tajikistan). Aerosol samples were collected during a period of 2 months from March to May 2015 using a high volume DIGITEL DHA-80 sampler on quartz fiber filters. The filters were analyzed for their ionic, trace metals as well as organic and elemental carbon (OC/EC) content. The aerosol mass showed strong variation with mass concentration ranging from 18 μg/m3 to 110 μg/m3. The mineral dust concentrations varied between 0.9 μg/m3 and 88 μg/m3. Days of high aerosol mass loadings were dominated by mineral dust, which made up to about 80% of the aerosol mass while organic matter and inorganic ions made up about 70% of the aerosol mass during days of low aerosol mass loadings. The mineral dust composition showed different trace metal signatures in comparison to Saharan dust with higher Ca content and Ca/Fe ratios twice as high as that observed in Saharan dust. Strong influence of anthropogenic activities was observed in the trace metal concentrations with Zn and Pb concentrations ranging from 7 to 197 ng/m3 and 2 to 20 ng/m3, respectively. Mineral dust and anthropogenic activities relating to traffic, combustion as well as metallurgical industrial emissions are identified as the sources of the aerosol during this period. © 2019 The Authors, published by EDP Sciences.