Search Results

Now showing 1 - 3 of 3
  • Item
    Experimentally minimized beam emittance from an L-band photoinjector
    (College Park : American Institute of Physics Inc., 2012) Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.-J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; Klemz, G.; Köhler, W.; Mahgoub, M.; Malyutin, D.; Nozdrin, M.; Oppelt, A.; Otevrel, M.; Petrosyan, B.; Rimjaem, S.; Shapovalov, A.; Vashchenko, G.; Weidinger, S.; Wenndorff, R.; Flöttmann, K.; Hoffmann, M.; Lederer, S.; Schlarb, H.; Schreiber, S.; Templin, I.; Will, I.; Paramonov, V.; Richter, D.
    High brightness electron sources for linac based free-electron lasers (FELs) are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008-2009 for a bunch charge of 1, 0.5, 0.25, and 0.1nC resulted in measured emittance values which are beyond the requirements of the European XFEL. Several essential modifications were commissioned in 2010-2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.
  • Item
    Process flow to integrate nanostructures on silicon grass in surface micromachined systems
    (Bristol : IOP Publ., 2016) Mehner, H.; Müller, L.; Biermann, S.; Hänschke, F.; Hoffmann, M.
    The process flow to integrate metallic nanostructures in surface micromachining processes is presented. The nanostructures are generated by evaporation of microstructured silicon grass with metal. The process flow is based on the lift-off of a thin amorphous silicon layer deposited using a CVD process. All steps feature a low temperature load beneath 120 °C and high compatibility with many materials as only well-established chemicals are used. As a result metallic nanostructures usable for optical applications can be generated as part of multilayered microsystems fabricated in surface micromachining.
  • Item
    Binding energy referencing for XPS in Alkali metal-based battery materials research (II): Application to complex composite electrodes
    (Basel : MDPI AG, 2018) Oswald, S.; Thoss, F.; Zier, M.; Hoffmann, M.; Jaumann, T.; Herklotz, M.; Nikolowski, K.; Scheiba, F.; Kohl, M.; Giebeler, L.; Mikhailova, D.; Ehrenberg, H.
    X-ray photoelectron spectroscopy (XPS) is a key method for studying (electro-)chemical changes in metal-ion battery electrode materials. In a recent publication, we pointed out a conflict in binding energy (BE) scale referencing at alkali metal samples, which is manifested in systematic deviations of the BEs up to several eV due to a specific interaction between the highly reactive alkali metal in contact with non-conducting surrounding species. The consequences of this phenomenon for XPS data interpretation are discussed in the present manuscript. Investigations of phenomena at surface-electrolyte interphase regions for a wide range of materials for both lithium and sodium-based applications are explained, ranging from oxide-based cathode materials via alloys and carbon-based anodes including appropriate reference chemicals. Depending on material class and alkaline content, specific solutions are proposed for choosing the correct reference BE to accurately define the BE scale. In conclusion, the different approaches for the use of reference elements, such as aliphatic carbon, implanted noble gas or surface metals, partially lack practicability and can lead to misinterpretation for application in battery materials. Thus, this manuscript provides exemplary alternative solutions.