Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere

2022, Jaen, Juliana, Renkwitz, Toralf, Chau, Jorge L., He, Maosheng, Hoffmann, Peter, Yamazaki, Yosuke, Jacobi, Christoph, Tsutsumi, Masaki, Matthias, Vivien, Hall, Chris

Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (g1/4g54g gN) and northern Norway (g1/4g69g gN). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.

Loading...
Thumbnail Image
Item

Mesospheric Q2DW Interactions With Four Migrating Tides at 53°N Latitude: Zonal Wavenumber Identification Through Dual‐Station Approaches

2021, He, Maosheng, Forbes, Jeffrey M., Li, Guozhu, Jacobi, Christoph, Hoffmann, Peter

Mesospheric winds from two longitudinal sectors at 53°N latitude are combined to investigate quasi-two-day waves (Q2DWs) and their nonlinear interactions with tides. In a summer 2019 case study, we diagnose the zonal wavenumber m of spectral peaks at expected frequencies through two dual-station approaches, a phase differencing technique (PDT) on individual spectral peaks and a least squares procedure on family batched peaks. Consistent results from the approaches verify the occurrences of Rossby-gravity modes (m = 3 and 4 at periods T = 2.1 and 1.7 days), and their secondary waves (SWs) generated from interactions with diurnal, semi-diurnal, ter-diurnal, and quatra-diurnal migrating tides. We further extend the PDT to 2012–2019, illustrating that Q2DWs exhibit significant interannual variability. Composite analysis reveals seasonal and altitude variations of the Rossby-gravity modes and their SWs. The Rossby-gravity modes maximize in local summer, whereas their 16- and 9.6-h SWs appear more in winter.

Loading...
Thumbnail Image
Item

Verbundprojekt im Rahmen von "Wirtschaft trifft Wissenschaft": Technologietransfer Leibniz-Nordost : Schlussbericht

2011, Eixmann, Ronald, Hoffmann, Peter

[no abstract available]

Loading...
Thumbnail Image
Item

Fire, late frost, nun moth and drought risks in Germany's forests under climate change

2016, Lasch-Born, Petra, Suckow, Felicitas, Gutsch, Martin, Hauf, Ylva, Hoffmann, Peter, Kollas, Chris, Reyer, Christopher P.O.

Ongoing climate change affects growth and increases biotic and abiotic threats to Germany's forests. We analysed how these risks develop through the mid-century under a variety of climate change scenarios using the process-based forest model 4C. This model allows the calculation of indicators for fire danger, late frost risk for beech and oak, drought stress and nun moth risk. 4C was driven by a set of 4 simulations of future climate generated with the statistical model STARS and with 10 simulations of future climate based on EURO-CORDEX model simulations for the RCP2.6, RCP4.5 and RCP8.5 pathways. A set of about 70000 forest stands (Norway spruce, Scots pine, beech, oak, birch), based on the national forest inventory describing 98.4 % of the forest in Germany, was used together with data from a digital soil map. The changes and the range of changes were analysed by comparing results of a recent time period (1971–2005) and a scenario time period (2011–2045). All indicators showed higher risks for the scenario time period compared to the recent time period, except the late frost risk indicators, if averaged over all climate scenarios. The late frost risk for beech and oaks decreased for the main forest sites. Under recent climate conditions, the highest risk with regard to all five indicators was found to be in the Southwest Uplands and the northern part of Germany. The highest climate-induced uncertainty regarding the indicators for 2011–2045 is projected for the East Central Uplands and Northeast German Plain.

Loading...
Thumbnail Image
Item

Summer, sun and sepsis—The influence of outside temperature on nosocomial bloodstream infections: A cohort study and review of the literature

2020, Schwab, Frank, Gastmeier, Petra, Hoffmann, Peter, Meyer, Elisabeth

The retrospective cohort study is based on two databases: The German national surveillance system for nosocomial infections in intensive care units (ICU-KISS) from 2001 to 2015 and aggregated monthly climate data. Primary bloodstream infection (PBSI) is defined as a positive blood culture with one (or more) pathogen(s) which are not related to an infection on another site and which were not present at admission. Monthly infection data were matched with postal code, calendar month and corresponding monthly climate and weather data. All analyses were exploratory in nature. 1,196 ICUs reported data on PBSI to KISS. The ICUs were located in 779 hospitals and in 728 different postal codes in Germany. The majority of the 19,194 PBSI were caused by gram-positive bacteria. In total, the incidence density of BSI was 17% (IRR 1.168, 95%CI 1.076–1.268) higher in months with high temperatures (≥20°C) compared to months with low temperatures (<5°C). The effect was most prominent for gram-negatives; more than one third (38%) higher followed by gram-positives with 13%. Fungi reached their highest IRR at moderately warm temperatures between 15–20°C. At such temperatures fungi showed an increase of 33% compared to temperatures below 5°C. PBSI spiked in summer with a peak in July and August. PBSI differed by pathogen: The majority of bacteria increased with rising temperatures. Enterococci showed no seasonality. S. pneumoniae reached a peak in winter time. The association of the occurrence of PBSI and temperatures ≥20°C was stronger when the mean monthly temperature in the month prior to the occurrence of BSI was considered instead of the temperature in the month of the occurrence of BSI. High average temperatures ≥20°C increased the risk of the development of a PBSI by 16% compared with low temperatures <5°C.

Loading...
Thumbnail Image
Item

ZonalWave Number Diagnosis of RossbyWave-Like Oscillations Using Paired Ground-Based Radars

2020, He, Maosheng, Yamazaki, Yosuke, Hoffmann, Peter, Hall, Chris M., Tsutsumi, Masaki, Li, Guozhu, Chau, Jorge Luis

Free traveling Rossby wave normal modes (RNMs) are often investigated through large-scale space-time spectral analyses, which therefore is subject to observational availability, especially in the mesosphere. Ground-based mesospheric observations were broadly used to identify RNMs mostly according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses zonal wave numbers of RNM-like oscillations occurring in mesospheric winds observed by two meteor radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events (SSWs) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal wave number m=1, excepting one 16-day oscillation associated with m=2. We discuss the m=1 oscillations as transient RNMs and the m=2 oscillation as a secondary wave of nonlinear interaction between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs, suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a similar network at 54°N during 2012–2016. Explored is a manifestation of 5-day wave, namely, an oscillation at 5–7 days with m=1), around the onset of SSW 2013, supporting the associations between RNMs and SSWs. ©2020. The Authors.

Loading...
Thumbnail Image
Item

Trägheitsschwerewellen und ihre Verbindung zu brechenden Rossbywellen : Schlussbericht

2005, Peters, Dieter H.W., Gerding, Michael, Hoffmann, Peter, Zülicke, Christoph, Serafimovich, Andrei

[no abstract available]