Search Results

Now showing 1 - 2 of 2
  • Item
    Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy
    (Basel : MDPI, 2020) Skrotzki, Werner; Pukenas, Aurimas; Odor, Eva; Joni, Bertalan; Ungar, Tamas; Völker, Bernhard; Hohenwarter, Anton; Pippan, Reinhard; George, Easo P.
    The equiatomic face-centered cubic high-entropy alloy CrMnFeCoNi was severely deformed at room and liquid nitrogen temperature by high-pressure torsion up to shear strains of about 170. Itsmicrostructurewas analyzed by X-ray line profile analysis and transmission electronmicroscopy and its texture by X-ray microdiffraction. Microhardness measurements, after severe plastic deformation, were done at room temperature. It is shown that at a shear strain of about 20, a steady state grain size of 24 nm, and a dislocation density of the order of 1016 m-2 is reached. The dislocations are mainly screw-type with low dipole character. Mechanical twinning at room temperature is replaced by a martensitic phase transformation at 77 K. The texture developed at room temperature is typical for sheared face-centered cubic nanocrystalline metals, but it is extremely weak and becomes almost random after high-pressure torsion at 77 K. The strength of the nanocrystalline material produced by high-pressure torsion at 77 K is lower than that produced at room temperature. The results are discussed in terms of different mechanisms of deformation, including dislocation generation and propagation, twinning, grain boundary sliding, and phase transformation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Phase Transformation Induced by High Pressure Torsion in the High-Entropy Alloy CrMnFeCoNi
    (Basel : MDPI, 2022) Chulist, Robert; Pukenas, Aurimas; Chekhonin, Paul; Hohenwarter, Anton; Pippan, Reinhard; Schell, Norbert; Skrotzki, Werner
    The forward and reverse phase transformation from face-centered cubic (fcc) to hexagonal close-packed (hcp) in the equiatomic high-entropy alloy (HEA) CrMnFeCoNi has been investigated with diffraction of high-energy synchrotron radiation. The forward transformation has been induced by high pressure torsion at room and liquid nitrogen temperature by applying different hydrostatic pressures and large shear strains. The volume fraction of hcp phase has been determined by Rietveld analysis after pressure release and heating-up to room temperature as a function of hydrostatic pressure. It increases with pressure and decreasing temperature. Depending on temperature, a certain pressure is necessary to induce the phase transformation. In addition, the onset pressure depends on hydrostaticity; it is lowered by shear stresses. The reverse transformation evolves over a long period of time at ambient conditions due to the destabilization of the hcp phase. The effect of the phase transformation on the microstructure and texture development and corresponding microhardness of the HEA at room temperature is demonstrated. The phase transformation leads to an inhomogeneous microstructure, weakening of the shear texture, and a surprising hardness anomaly. Reasons for the hardness anomaly are discussed in detail.