Search Results

Now showing 1 - 3 of 3
  • Item
    A case study of a sporadic sodium layer observed by the ALOMAR Weber Na lidar
    (München : European Geopyhsical Union, 2008) Nesse, H.; Heinrich, D.; Williams, B.; Hoppe, U.-P.; Stadsnes, J.; Rietveld, M.; Singer, W.; Blum, U.; Sandanger, M.I.; Trondsen, E.
    Simultaneous measurements of temperature and polar mesosphere summer echoes (PMSE) were performed at the polar cap (78° N) during summer 2001 and 2003. In summer time the mesopause region is characterized by extremely low temperatures around 120 K. It is remarkable that PMSE are practically never observed above 92 km although temperatures are low enough to allow the existence of ice particles. In this case study we compare the PMSE topside with temperatures measured by the potassium lidar and with frost point temperatures using water-vapor mixing ratios from models. We find striking discrepancies with our current understanding of ice particles and temperature in this region. In this case study we find that the temperature can be more than 20 K lower than the frost point temperature but no PMSE is observed above 92 km altitude. We show that the lack of PMSE does not necessarily imply that the temperature is too high.
  • Item
    Rocket measurements of positive ions during polar mesosphere winter echo conditions
    (München : European Geopyhsical Union, 2006) Brattli, A.; Blix, T.A.; Lie-Svendsen, Ø.; Hoppe, U.-P.; Lübken, F.-J.; Rapp, M.; Singer, W.; Latteck, R.; Friedrich, M.
    On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E) during conditions with Polar Mesosphere Winter Echoes (PMWE). Each of the rockets was equipped with a Positive Ion Probe (PIP) and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km) layer.
  • Item
    The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
    (München : European Geopyhsical Union, 2006) Lübken, F.-J.; Strelnikov, B.; Rapp, M.; Singer, W.; Latteck, R.; Brattli, A.; Hoppe, U.-P.; Friedrich, M.
    In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N) into strong VHF radar echoes called "Polar Mesosphere Winter Echoes" (PMWE). The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively). Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km): viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on various parameters, most important electron number density and turbulence intensity. Our observational and theoretical considerations do not provide any evidence that charged aerosol particles are needed to explain PMWE, in contrast to the summer echoes which owe their existence to charged ice particles.