Search Results

Now showing 1 - 3 of 3
  • Item
    Pressure-driven collapse of the relativistic electronic ground state in a honeycomb
    (London : Nature Publishing Group, 2018) Clancy, J.P.; Gretarsson, H.; Sears, J.A.; Singh, Y.; Desgreniers, S.; Mehlawat, K.; Layek, S.; Rozenberg, G.K.; Ding, Y.; Upton, M.H.; Casa, D.; Chen, N.; Im, J.; Lee, Y.; Yadav, R.; Hozoi, L.; Efremov, D.; Van Den Brink, J.; Kim, Y.-J.
    Honeycomb-lattice quantum magnets with strong spin-orbit coupling are promising candidates for realizing a Kitaev quantum spin liquid. Although iridate materials such as Li2IrO3 and Na2IrO3 have been extensively investigated in this context, there is still considerable debate as to whether a localized relativistic wavefunction (J eff = 1/2) provides a suitable description for the electronic ground state of these materials. To address this question, we have studied the evolution of the structural and electronic properties of α-Li2IrO3 as a function of applied hydrostatic pressure using a combination of X-ray diffraction and X-ray spectroscopy techniques. We observe striking changes even under the application of only small hydrostatic pressure (P ≤ 0.1 GPa): A distortion of the Ir honeycomb lattice (via X-ray diffraction), a dramatic decrease in the strength of spin-orbit coupling effects (via X-ray absorption spectroscopy), and a significant increase in non-cubic crystal electric field splitting (via resonant inelastic X-ray scattering). Our data indicate that α-Li2IrO3 is best described by a J eff = 1/2 state at ambient pressure, but demonstrate that this state is extremely fragile and collapses under the influence of applied pressure.
  • Item
    Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3
    (College Park, MD : American Physical Society, 2018) Bastien, G.; Garbarino, G.; Yadav, R.; Martinez-Casado, F.J.; Beltrán, Rodríguez, R.; Stahl, Q.; Kusch, M.; Limandri, S.P.; Ray, R.; Lampen-Kelley, P.; Mandrus, D.G.; Nagler, S.E.; Roslova, M.; Isaeva, A.; Doert, T.; Hozoi, L.; Wolter, A.U.B.; Büchner, B.; Geck, J.; Van Den Brink, J.
    Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material α-RuCl3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p∼0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin-liquid phase in α-RuCl3 strongly competes with the crystallization of spin singlets into a valence bond solid.
  • Item
    V4 tetrahedral units in AV4X8 lacunar spinels: Near degeneracy, charge fluctuations, and configurational mixing within a valence space of up to 21 d orbitals
    (2020) Hozoi, L.; Eldeeb, M.S.; Rößler, U.K.
    All properties of a given molecule or solid are determined by the way valence electrons are distributed over single-particle energy levels. For multiple, closely spaced single-particle levels, different occupation patterns may provide many-electron quantum states that are close in energy, interact, and admix. We address such near-degeneracy electron correlation effects for V4 vanadium tetrahedral units as encountered in the lacunar spinel GaV4S8, explicitly taking into account up to 21 vanadium valence orbitals, and find effective orbital occupation numbers much different as compared to the picture previously laid out on the basis of mean-field calculations. In light of these results, a modified theoretical frame seems necessary to explain the peculiar magnetic properties of lacunar spinels and of related compounds.