Search Results

Now showing 1 - 2 of 2
  • Item
    Some inverse problems arising from elastic scattering by rigid obstacles
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Hu, Guanghui; Kirsch, Andreas; Sini, Mourad
    In the first part, it is proved that a C2-regular rigid scatterer in R3 can be uniquely identified by the shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in R2. In particular, the factorization method also leads to some uniqueness results for all frequencies excluding possibly a discrete set.
  • Item
    Direct and inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hu, Guanghui; Kirsch, Andreas
    Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface from above. The medium above the surface is supposed to be filled with homogeneous compressible inviscid fluid with a constant mass density, whereas the region below is occupied by an isotropic and linearly elastic solid body characterized by the Lamé constants. This paper is concerned with direct (or forward) and inverse fluid-solid interaction (FSI) problems with unbounded bi-periodic interfaces between acoustic and elastic waves. We present a variational approach to the forward interaction problem with Lipschitz interfaces. Existence of quasi-periodic solutions in Sobolev spaces is established at arbitrary frequency of incidence, while uniqueness is proved only for small frequencies or for all frequencies excluding a discrete set. Concerning the inverse problem, we show that the factorization method by Kirsch (1998) is applicable to the FSI problem in periodic structures. A computational criterion and a uniqueness result are justified for precisely characterizing the elastic body by utilizing the scattered acoustic near field measured in the fluid.