Search Results

Now showing 1 - 3 of 3
  • Item
    Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Elschner, Johannes; Hu, Guanghui; Yamamoto, Masahiro
    Consider the two-dimensional inverse elastic scattering problem of recovering a piecewise linear rigid rough or periodic surface of rectangular type for which the neighboring line segments are always perpendicular.We prove the global uniqueness with at most two incident elastic plane waves by using near-field data. If the Lamé constants satisfy a certain condition, then the data of a single plane wave is sufficient to imply the uniqueness. Our proof is based on a transcendental equation for the Navier equation, which is derived from the expansion of analytic solutions to the Helmholtz equation. The uniqueness results apply also to an inverse scattering problem for non-convex bounded rigid bodies of rectangular type.
  • Item
    Uniqueness in inverse scattering of elastic waves by three-dimensional polyhedral diffraction gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Elschner, Johannes; Hu, Guanghui
    Literaturverz. S. 35 We consider the inverse elastic scattering problem of determining a three-dimensional diffraction grating profile from scattered waves measured above the structure. In general, a grating profile cannot be uniquely determined by a single incoming plane wave. We completely characterize and classify the bi-periodic polyhedral structures under the boundary conditions of the third and fourth kinds that cannot be uniquely recovered by only one incident plane wave. Thus we have global uniqueness for a polyhedral grating profile by one incident elastic plane wave if and only if the profile belongs to neither of the unidentifiable classes, which can be explicitly described depending on the incident field and the type of boundary conditions. Our approach is based on the reflection principle for the Navier equation and the reflectional and rotational invariance of the total field.
  • Item
    Inverse wave scattering by unbounded obstacles : uniqueness for the two-dimensional Helmholtz equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Hu, Guanghui
    In this paper we present some uniqueness results on inverse wave scattering by unbounded obstacles for the two-dimensional Helmholtz equation. We prove that an impenetrable one-dimensional rough surface can be uniquely determined by the values of the scattered field taken on a line segment above the surface that correspond to the incident waves generated by a countable number of point sources. For penetrable rough layers in a piecewise constant medium, the refractive indices together with the rough interfaces (on which the TM transmission conditions are imposed) can be uniquely identified using the same measurements and the same incident point source waves. Moreover, a Dirichlet polygonal rough surface can be uniquely determined by a single incident point source wave provided a certain condition is imposed on it.