Search Results

Now showing 1 - 2 of 2
  • Item
    Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Elschner, Johannes; Hu, Guanghui; Yamamoto, Masahiro
    Consider the two-dimensional inverse elastic scattering problem of recovering a piecewise linear rigid rough or periodic surface of rectangular type for which the neighboring line segments are always perpendicular.We prove the global uniqueness with at most two incident elastic plane waves by using near-field data. If the Lamé constants satisfy a certain condition, then the data of a single plane wave is sufficient to imply the uniqueness. Our proof is based on a transcendental equation for the Navier equation, which is derived from the expansion of analytic solutions to the Helmholtz equation. The uniqueness results apply also to an inverse scattering problem for non-convex bounded rigid bodies of rectangular type.
  • Item
    Near-field imaging of scattering obstacles with the factorization method: Fluid-solid interaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Yin, Tao; Hu, Guanghui; Xu, Liwei; Zhang, Bo
    Consider a time-harmonic acoustic point source incident on a bounded isotropic linearly elastic body immersed in a homogeneous compressible inviscid fluid. This paper is concerned with the inverse fluid-solid interaction (FSI) problem of recovering the elastic body from near-field data generated by infinitely many incident point source waves at a fixed energy. The incident point sources and the receivers for recording scattered signals are both located on a non-spherical closed surface, on which an outgoing-to-incoming (OtI) operator is appropriately defined. We provide a theoretical justification of the factorization method for precisely characterizing the scatterer by utilizing the spectrum of the near-field operator. This generalizes the imaging scheme developed in [G. Hu, J. Yang, B. Zhang, H. Zhang, Inverse Problems 30 (2014): 095005] to the case when near-field data are measured on non-spherical surfaces. Numerical examples in 2D are demonstrated to show the validity and accuracy of the inversion algorithm, even if limited aperture data are available on one or several line segments.