Search Results

Now showing 1 - 2 of 2
  • Item
    Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: New insight into the absorption enhancement of black carbon in the atmosphere
    (München : European Geopyhsical Union, 2016) Zhang, Yuxuan; Zhang, Qiang; Cheng, Yafang; Su, Hang; Kecorius, Simonas; Wang, Zhibin; Wu, Zhijun; Hu, Min; Zhu, Tong; Wiedensohler, Alfred; He, Kebin
    The morphology and density of black carbon (BC) cores in internally mixed BC (In-BC) particles affect their mixing state and absorption enhancement. In this work, we developed a new method to measure the morphology and effective density of the BC cores of ambient In-BC particles using a single-particle soot photometer (SP2) and a volatility tandem differential mobility analyzer (VTDMA) during the CAREBeijing-2013 campaign from 8 to 27 July 2013 at Xianghe Observatory. This new measurement system can select size-resolved ambient In-BC particles and measure the mobility diameter and mass of the In-BC cores. The morphology and effective density of the ambient In-BC cores are then calculated. For the In-BC cores in the atmosphere, changes in their dynamic shape factor (χ) and effective density (ρeff) can be characterized as a function of the aging process (Dp∕Dc) measured by SP2 and VTDMA. During an intensive field study, the ambient In-BC cores had an average shape factor χ of  ∼ 1.2 and an average density of  ∼ 1.2 g cm−3, indicating that ambient In-BC cores have a near-spherical shape with an internal void of  ∼ 30 %. From the measured morphology and density, the average shell ∕ core ratio and absorption enhancement (Eab) of ambient BC were estimated to be 2.1–2.7 and 1.6–1.9, respectively, for In-BC particles with sizes of 200–350 nm. When the In-BC cores were assumed to have a void-free BC sphere with a density of 1.8 g cm−3, the shell ∕ core ratio and Eab were overestimated by  ∼ 13 and  ∼ 17 %, respectively. The new approach developed in this work improves the calculations of the mixing state and optical properties of ambient In-BC particles by quantifying the changes in the morphology and density of ambient In-BC cores during aging.
  • Item
    Global analysis of continental boundary layer new particle formation based on long-term measurements
    (Katlenburg-Lindau : EGU, 2018) Nieminen, Tuomo; Kerminen, Veli-Matti; Petäjä, Tuukka; Aalto, Pasi P.; Arshinov, Mikhail; Asmi, Eija; Baltensperger, Urs; Beddows, David C. S.; Beukes, Johan Paul; Collins, Don; Ding, Aijun; Harrison, Roy M.; Henzing, Bas; Hooda, Rakesh; Hu, Min; Hõrrak, Urmas; Kivekäs, Niku; Komsaare, Kaupo; Krejci, Radovan; Kristensson, Adam; Laakso, Lauri; Laaksonen, Ari; Leaitch, W. Richard; Lihavainen, Heikki; Mihalopoulos, Nikolaos; Németh, Zoltán; Nie, Wei; O'Dowd, Colin; Salma, Imre; Sellegri, Karine; Svenningsson, Birgitta; Swietlicki, Erik; Tunved, Peter; Ulevicius, Vidmantas; Vakkari, Ville; Vana, Marko; Wiedensohler, Alfred; Wu, Zhijun; Virtanen, Annele; Kulmala, Markku
    Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.