Search Results

Now showing 1 - 1 of 1
  • Item
    Emission Manipulation by DNA Origami‐Assisted Plasmonic Nanoantennas
    (Weinheim : Wiley-VCH, 2021) Yeşilyurt, Ayşe Tuğça Mina; Huang, Jer‐Shing
    Plasmonic nanoantennas mediate far and near optical fields and confine the light to subwavelength dimensions. The spatial organization of nanoantenna elements is critical as it affects the interelement coupling and determines the resultant antenna mode. To couple quantum emitters to optical antennas, high precision on the order of a few nm with respect to the antenna is necessary. As an emerging nanofabrication technique, DNA origami has proven itself to be a robust nanobreadboard to obtain sub-5 nm positioning precision for a diverse range of materials. Eliminating the need for expensive state-of-the-art top-down fabrication facilities, DNA origami enables cost-efficient implementation of nanoscale architectures, including novel nanoantennas. The ability of DNA origami to deterministically position single quantum emitters into nanoscale hotspots further boosts the efficiency of light–matter interaction controlled via optical antennas. This review recapitulates the recent progress in plasmonic nanoantennas assisted by DNA origami and focuses on their various configurations. How those nanoantennas act on the emission and absorption properties of quantum emitters positioned in the hotspots is explicitly discussed. In the end, open challenges are outlined and future possibilities lying ahead are pointed out for this powerful triad of biotechnology, nanooptics, and photophysics. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH