Search Results

Now showing 1 - 2 of 2
  • Item
    Flood risk in a range of spatial perspectives – from global to local scales
    (Katlenburg-Lindau : European Geophysical Society, 2019) Kundzewicz, Zbigniew W.; Su, Buda; Wang, Yanjun; Wang, Guojie; Wang, Guofu; Huang, Jinlong; Jiang, Tong
    The present paper examines flood risk (composed of hazard, exposure, and vulnerability) in a range of spatial perspectives – from the global to the local scale. It deals with observed records, noting that flood damage has been increasing. It also tackles projections for the future, related to flood hazard and flood losses. There are multiple factors driving flood hazard and flood risk and there is a considerable uncertainty in our assessments, and particularly in projections for the future. Further, this paper analyses options for flood risk reduction in several spatial dimensions, from global framework to regional to local scales. It is necessary to continue examination of the updated records of flood-related indices, trying to search for changes that influence flood hazard and flood risk in river basins.
  • Item
    Drought losses in China might double between the 1.5 °C and 2.0 °C warming
    (Washington, DC : NAS, 2018) Su, Buda; Huang, Jinlong; Fischer, Thomas; Wang, Yanjun; Kundzewicz, Zbigniew W.; Zhai, Jianqing; Sun, Hemin; Wang, Anqian; Zeng, Xiaofan; Wang, Guojie; Tao, Hui; Gemmer, Marco; Li, Xiucang; Jiang, Tong
    We project drought losses in China under global temperature increase of 1.5 °C and 2.0 °C, based on the Standardized Precipitation Evapotranspiration Index (SPEI) and the Palmer Drought Severity Index (PDSI), a cluster analysis method, and “intensity-loss rate” function. In contrast to earlier studies, to project the drought losses, we predict the regional gross domestic product under shared socioeconomic pathways instead of using a static socioeconomic scenario. We identify increasing precipitation and evapotranspiration pattern for the 1.5 °C and 2.0 °C global warming above the preindustrial at 2020–2039 and 2040–2059, respectively. With increasing drought intensity and areal coverage across China, drought losses will soar. The estimated loss in a sustainable development pathway at the 1.5 °C warming level increases 10-fold in comparison with the reference period 1986–2005 and nearly threefold relative to the interval 2006–2015. However, limiting the temperature increase to 1.5 °C can reduce the annual drought losses in China by several tens of billions of US dollars, compared with the 2.0 °C warming.