Search Results

Now showing 1 - 2 of 2
  • Item
    Coherent correlation imaging for resolving fluctuating states of matter
    (London : Macmillan Publishers Limited, 2023) Klose, Christopher; Büttner, Felix; Hu, Wen; Mazzoli, Claudio; Litzius, Kai; Battistelli, Riccardo; Lemesh, Ivan; Bartell, Jason M.; Huang, Mantao; Günther, Christian M.; Schneider, Michael; Barbour, Andi; Wilkins, Stuart B.; Beach, Geoffrey S. D.; Eisebitt, Stefan; Pfau, Bastian
    Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5–8 and topology9–12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.
  • Item
    Voltage control of magnetic order in RKKY coupled multilayers
    (Washington, DC [u.a.] : Assoc., 2023) Kossak, Alexander E.; Huang, Mantao; Reddy, Pooja; Wolf, Daniel; Beach, Geoffrey S. D.
    In the field of antiferromagnetic (AFM) spintronics, there is a substantial effort present to make AFMs viable active components for efficient and fast devices. Typically, this is done by manipulating the AFM Néel vector. Here, we establish a method of enabling AFM active components by directly controlling the magnetic order. We show that magneto-ionic gating of hydrogen enables dynamic control of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in solid-state synthetic AFM multilayer devices. Using a gate voltage, we tune the RKKY interaction to drive continuous transitions from AFM to FM and vice versa. The switching is submillisecond at room temperature and fully reversible. We validate the utility of this method by demonstrating that magneto-ionic gating of the RKKY interaction allows for 180° field-free deterministic switching. This dynamic method of controlling a fundamental exchange interaction can engender the manipulation of a broader array of spin textures, e.g., chiral domain walls and skyrmions.