Search Results

Now showing 1 - 2 of 2
  • Item
    Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves
    (Washington, DC : Soc., 2020) Zhan, Jiwei; Huang, Shiang-Yu; Lin, Zhan-Hong; Huang, Jer-Shing
    We systematically investigate the generation of optical chirality patterns by applying the superposition of two waves in three scenarios, namely free-space plane waves, evanescent waves of totally reflected light at dielectric interface and propagating surface plasmon waves on a metallic surface. In each scenario, the general analytical solution of the optical chirality pattern is derived for different polarization states and propagating directions of the two waves. The analytical solutions are verified by numerical simulations. Spatially structured optical chirality patterns can be generated in all scenarios if the incident polarization states and propagation directions are correctly chosen. Optical chirality enhancement can be obtained from the constructive interference of free-space circularly polarized light or enhanced evanescent waves of totally reflected light. Surface plasmon waves do not provide enhanced optical chirality unless the near-field intensity enhancement is sufficiently high. The structured optical chirality patterns may find applications in chirality sorting, chiral imaging and circular dichroism spectroscopy. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
  • Item
    Signal and noise analysis for chiral structured illumination microscopy
    (Washington, DC : Optical Society of America, OSA, 2021) Huang, Shiang-Yu; Singh, Ankit Kumar; Huang, Jer-Shing
    Recently, chiral structured illumination microscopy has been proposed to image fluorescent chiral domains at sub-wavelength resolution. Chiral structured illumination microscopy is based on the combination of structured illumination microscopy, fluorescence-detected circular dichroism, and optical chirality engineering. Since circular dichroism of natural chiral molecules is typically weak, the differential fluorescence is also weak and can be easily buried by the noise, hampering the fidelity of the reconstructed images. In this work, we systematically study the impact of the noise on the quality and resolution of chiral domain images obtained by chiral SIM. We analytically describe the signal-to-noise ratio of the reconstructed chiral SIM image in the Fourier domain and verify our theoretical calculations with numerical demonstrations. Accordingly, we discuss the feasibility of chiral SIM in different experimental scenarios and propose possible strategies to enhance the signal-to-noise ratio for samples with weak circular dichroism.