Search Results

Now showing 1 - 2 of 2
  • Item
    Activation of perfluoroalkyl iodides by anions: extending the scope of halogen bond activation to C(sp3)-H amidation, C(sp2)-H iodination, and perfluoroalkylation reactions
    (Cambridge : RSC Publishing, 2023) Wang, Yaxin; Cao, Zehui; He, Qin; Huang, Xin; Liu, Jiaxi; Neumann, Helfried; Chen, Gong; Beller, Matthias
    A simple, efficient, and convenient activation of perfluoroalkyl iodides by tBuONa or KOH, without expensive photo- or transition metal catalysts, allows the promotion of versatile a-sp3 C-H amidation reactions of alkyl ethers and benzylic hydrocarbons, C-H iodination of heteroaryl compounds, and perfluoroalkylations of electron-rich p bonds. Mechanistic studies show that these novel protocols are based on the halogen bond interaction between perfluoroalkyl iodides and tBuONa or KOH, which promote homolysis of perfluoroalkyl iodides under mild conditions.
  • Item
    Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation
    (Weinheim : Wiley-VCH, 2021) Wen, Ping; Wang, Xueyi; Moreno, Silvia; Boye, Susanne; Voigt, Dagmar; Voit, Brigitte; Huang, Xin; Appelhans, Dietmar
    The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.