Search Results

Now showing 1 - 6 of 6
  • Item
    Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
    (Katlenburg-Lindau : Copernicus, 2020) Cornford, Stephen L.; Seroussi, Helene; Asay-Davis, Xylar S.; Gudmundsson, G. Hilmar; Arthern, Rob; Borstad, Chris; Christmann, Julia; dos Santos, Thiago Dias; Feldmann, Johannes; Goldberg, Daniel; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Leguy, Gunter; Lipscomb, William H.; Merino, Nacho; Durand, Gaël; Morlighem, Mathieu; Pollard, David; Rückamp, Martin; Williams, C. Rosie; Yu, Hongju
    We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions - notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods - taking a secondary role. © 2020 Wolters Kluwer Medknow Publications. All rights reserved.
  • Item
    ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
    (Katlenburg-Lindau : Copernicus, 2020) Seroussi, Hélène; Nowicki, Sophie; Payne, Antony J.; Goelzer, Heiko; Lipscomb, William H.; Abe-Ouchi, Ayako; Agosta, Cécile; Albrecht, Torsten; Asay-Davis, Xylar; Barthel, Alice; Calov, Reinhard; Cullather, Richard; Dumas, Christophe; Galton-Fenzi, Benjamin K.; Gladstone, Rupert; Golledge, Nicholas R.; Gregory, Jonathan M.; Greve, Ralf; Hattermann, Tore; Hoffman, Matthew J.; Humbert, Angelika; Huybrechts, Philippe; Jourdain, Nicolas C.; Kleiner, Thomas; Larour, Eric; Leguy, Gunter R.; Lowry, Daniel P.; Little, Chistopher M.; Morlighem, Mathieu; Pattyn, Frank; Pelle, Tyler; Price, Stephen F.; Quiquet, Aurélien; Reese, Ronja; Schlegel, Nicole-Jeanne; Shepherd, Andrew; Simon, Erika; Smith, Robin S.; Straneo, Fiammetta; Sun, Sainan; Trusel, Luke D.; Van Breedam, Jonas; van de Wal, Roderik S. W.; Winkelmann, Ricarda; Zhao, Chen; Zhang, Tong; Zwinger, Thomas
    Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. © Author(s) 2020.
  • Item
    Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP)
    (Cambridge : Cambridge University Press, 2020) Sun, Sainan; Pattyn, Frank; Simon, Erika G.; Albrecht, Torsten; Cornford, Stephen; Calov, Reinhard; Dumas, Christophe; Gillet-Chaulet, Fabien; Goelzer, Goelzer; Golledge, Nicholas R.; Greve, Ralf; Hoffman, Matthew J.; Humbert, Angelika; Kazmierczak, Elise; Kleiner, Thomas; Leguy, Gunter R.; Lipscomb, William H.; Martin, Daniel; Morlighem, Mathieu; Nowicki, Sophie; Pollard, David; Price, Stephen; Quiquet, Aurélien; Seroussi, Hélène; Schlemm, Tanja; Sutter, Johannes; van de Wal, Roderik S.W.; Winkelmann, Ricarda; Zhang, Tong
    Antarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their 'buttressing' effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the 'end-member' scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1-12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91-5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments. Copyright © The Author(s) 2020.
  • Item
    The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Goelzer, Heiko; Nowicki, Sophie; Payne, Anthony; Larour, Eric; Seroussi, Helene; Lipscomb, William H.; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew; Simon, Erika; Agosta, Cécile; Alexander, Patrick; Aschwanden, Andy; Barthel, Alice; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin; Felikson, Denis; Fettweis, Xavier; Golledge, Nicholas R.; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Little, Chris; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Quiquet, Aurelien; Rückamp, Martin; Schlegel, Nicole-Jeanne; Slater, Donald A.; Smith, Robin S.; Straneo, Fiammetta; Tarasov, Lev; van de Wal, Roderik; van den Broeke, Michiel
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.
  • Item
    Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
    (Göttingen : Copernicus Publ., 2020) Levermann, Anders; Winkelmann, Ricarda; Albrecht, Torsten; Goelzer, Heiko; Golledge, Nicholas R.; Greve, Ralf; Huybrechts, Philippe; Jordan, Jim; Leguy, Gunter; Martin, Daniel; Morlighem, Mathieu; Pattyn, Frank; Pollard, David; Quiquet, Aurelien; Rodehacke, Christian; Seroussi, Helene; Sutter, Johannes; Zhang, Tong; Van Breedam, Jonas; Calov, Reinhard; DeConto, Robert; Dumas, Christophe; Garbe, Julius; Gudmundsson, G. Hilmar; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Lipscomb, William H.; Meinshausen, Malte; Ng, Esmond; Nowicki, Sophie M.J.; Perego, Mauro; Price, Stephen F.; Saito, Fuyuki; Schlegel, Nicole-Jeanne; Sun, Sainan; van de Wal, Roderik S.W.
    The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain the ice flow response to the individual global warming path. The model median for the observational period from 1992 to 2017 of the ice loss due to basal ice shelf melting is 10.2 mm, with a likely range between 5.2 and 21.3 mm. For the same period the Antarctic ice sheet lost mass equivalent to 7.4mm of global sea level rise, with a standard deviation of 3.7mm (Shepherd et al., 2018) including all processes, especially surface-mass-balance changes. For the unabated warming path, Representative Concentration Pathway 8.5 (RCP8.5), we obtain a median contribution of the Antarctic ice sheet to global mean sea level rise from basal ice shelf melting within the 21st century of 17 cm, with a likely range (66th percentile around the mean) between 9 and 36 cm and a very likely range (90th percentile around the mean) between 6 and 58 cm. For the RCP2.6 warming path, which will keep the global mean temperature below 2 °C of global warming and is thus consistent with the Paris Climate Agreement, the procedure yields a median of 13 cm of global mean sea level contribution. The likely range for the RCP2.6 scenario is between 7 and 24 cm, and the very likely range is between 4 and 37 cm. The structural uncertainties in the method do not allow for an interpretation of any higher uncertainty percentiles.We provide projections for the five Antarctic regions and for each model and each scenario separately. The rate of sea level contribution is highest under the RCP8.5 scenario. The maximum within the 21st century of the median value is 4 cm per decade, with a likely range between 2 and 9 cm per decade and a very likely range between 1 and 14 cm per decade. © Author(s) 2020.
  • Item
    Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets
    (Hoboken, NJ : Wiley, 2021) Payne, Antony J.; Nowicki, Sophie; Abe‐Ouchi, Ayako; Agosta, Cécile; Alexander, Patrick; Albrecht, Torsten; Asay‐Davis, Xylar; Aschwanden, Andy; Barthel, Alice; Bracegirdle, Thomas J.; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cullather, Richard; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin L.; Felikson, Denis; Fettweis, Xavier; Galton‐Fenzi, Benjamin K.; Goelzer, Heiko; Gladstone, Rupert; Golledge, Nicholas R.; Gregory, Jonathan M.; Greve, Ralf; Hattermann, Tore; Hoffman, Matthew J.; Humbert, Angelika; Huybrechts, Philippe; Jourdain, Nicolas C.; Kleiner, Thomas; Munneke, Peter Kuipers; Larour, Eric; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Lipscomb, William H.; Little, Christopher M.; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Pattyn, Frank; Pelle, Tyler; Price, Stephen F.; Quiquet, Aurélien; Reese, Ronja; Rückamp, Martin; Schlegel, Nicole‐Jeanne; Seroussi, Hélène; Shepherd, Andrew; Simon, Erika; Slater, Donald; Smith, Robin S.; Straneo, Fiammetta; Sun, Sainan; Tarasov, Lev; Trusel, Luke D.; Van Breedam, Jonas; Wal, Roderik; Broeke, Michiel; Winkelmann, Ricarda; Zhao, Chen; Zhang, Tong; Zwinger, Thomas
    Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.