Search Results

Now showing 1 - 7 of 7
  • Item
    The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Cacho, Oscar J.; Moss, Jonathan; Thornton, Philip K.; Herrero, Mario; Henderson, Ben; Bodirsky, Benjamin L.; Humpenöder, Florian; Popp, Alexander; Lipper, Leslie
    Climate change is threatening food security in many tropical countries, where a large proportion of food is produced by vulnerable smallholder farmers. Interventions are available to offset many of the negative impacts of climate change on agriculture, and they can be tailored to local conditions often through relative modest investments. However, little quantitative information is available to guide investment or policy choices at a time when countries and development agencies are under pressure to implement policies that can help achieve Sustainable Development Goals while coping with climate change. Among smallholder adaptation options, developing seeds resilient to current and future climate shocks expected locally is one of the most important actions available now. In this paper, we used national and local data to estimate the costs of climate change to smallholder farmers in Malawi and Tanzania. We found that the benefits from adopting resilient seeds ranged between 984 million and 2.1 billion USD during 2020–2050. Our analysis demonstrates the benefits of establishing and maintaining a flexible national seed sector with participation by communities in the breeding, delivery, and adoption cycle. © 2020, The Author(s).
  • Item
    Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Hurtt, George C.; Chini, Louise; Sahajpal, Ritvik; Frolking, Steve; Bodirsky, Benjamin L.; Calvin, Katherine; Doelman, Jonathan C.; Fisk, Justin; Fujimori, Shinichiro; Klein Goldewijk, Kees; Hasegawa, Tomoko; Havlik, Peter; Heinimann, Andreas; Humpenöder, Florian; Jungclaus, Johan; Kaplan, Jed O.; Kennedy, Jennifer; Krisztin, Tamás; Lawrence, David; Lawrence, Peter; Ma, Lei; Mertz, Ole; Pongratz, Julia; Popp, Alexander; Poulter, Benjamin; Riahi, Keywan; Shevliakova, Elena; Stehfest, Elke; Thornton, Peter; Tubiello, Francesco N.; van Vuuren, Detlef P.; Zhang, Xin
    Human land use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth's surface, with consequences for climate and other ecosystem services. In the future, land use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community has developed the next generation of advanced Earth system models (ESMs) to estimate the combined effects of human activities (e.g., land use and fossil fuel emissions) on the carbon–climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, is required as input for these models. With most ESM simulations for CMIP6 now completed, it is important to document the land use patterns used by those simulations. Here we present results from the Land-Use Harmonization 2 (LUH2) project, which smoothly connects updated historical reconstructions of land use with eight new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land use patterns, underlying land use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds on a similar effort from CMIP5 and is now provided at higher resolution (0.25∘×0.25∘) over a longer time domain (850–2100, with extensions to 2300) with more detail (including multiple crop and pasture types and associated management practices) using more input datasets (including Landsat remote sensing data) and updated algorithms (wood harvest and shifting cultivation); it is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5 and are designed to enable new and improved estimates of the combined effects of land use on the global carbon–climate system.
  • Item
    Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement
    ([London] : Nature Publishing Group UK, 2022) Humpenöder, Florian; Popp, Alexander; Schleussner, Carl-Friedrich; Orlov, Anton; Windisch, Michael Gregory; Menke, Inga; Pongratz, Julia; Havermann, Felix; Thiery, Wim; Luo, Fei; v. Jeetze, Patrick; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Lejeune, Quentin
    Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions.
  • Item
    Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale
    (Katlenburg-Lindau : Copernics Publications, 2020) Li, Wei; Ciais, Philippe; Stehfest, Elke; van Vuuren, Detlef; Popp, Alexander; Arneth, Almut; Di Fulvio, Fulvio; Doelma, Jonathan; Humpenöder, Florian; Harper, Anna B.; Park, Taejin; Makowski, David; Havlik, Petr; Obersteiner, Michael; Wang, Jingmeng; Krause, Andreas; Liu, Wenfeng
    Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together with CCS carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current technology based on a large number of observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0:5 0:5 spatial resolution. We also provide a combined "best bioenergy crop" yield map by selecting one of the five crop types with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 tDMha1 yr1 (DM dry matter). High yields mainly occur in the Amazon region and southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and find that the median yields in our maps are 50% higher than those in the IAM maps. Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to identify the most suitable lands for future bioenergy crop plantations. The 0:5 0:5 global maps for yields of different bioenergy crops and the best crop and for the best crop composition generated from this study can be download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019). © 2019 Cambridge University Press. All rights reserved.
  • Item
    Carbon dioxide removal technologies are not born equal
    (Bristol : IOP Publ., 2021-7-1) Strefler, Jessica; Bauer, Nico; Humpenöder, Florian; Klein, David; Popp, Alexander; Kriegler, Elmar
    Technologies for carbon dioxide removal (CDR) from the atmosphere have been recognized as an important part of limiting warming to well below 2 °C called for in the Paris Agreement. However, many scenarios so far rely on bioenergy in combination with carbon capture and storage as the only CDR technology. Various other options have been proposed, but have scarcely been taken up in an integrated assessment of mitigation pathways. In this study we analyze a comprehensive portfolio of CDR options in terms of their regional and temporal deployment patterns in climate change mitigation pathways and the resulting challenges. We show that any CDR option with sufficient potential can reduce the economic costs of achieving the 1.5 °C target substantially without increasing the temperature overshoot. CDR helps to reduce net CO2 emissions faster and achieve carbon neutrality earlier. The regional distribution of CDR deployment in cost-effective mitigation pathways depends on which options are available. If only enhanced weathering of rocks on croplands or re- and afforestation are available, Latin America and Asia cover nearly all of global CDR deployment. Besides fairness and sustainability concerns, such a regional concentration would require large international transfers and thus strong international institutions. In our study, the full portfolio scenario is the most balanced from a regional perspective. This indicates that different CDR options should be developed such that all regions can contribute according to their regional potentials.
  • Item
    Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Bauer, Nico; Klein, David; Humpenöder, Florian; Kriegler, Elmar; Luderer, Gunnar; Popp, Alexander; Strefler, Jessica
    Biomass feedstocks can be used to substitute fossil fuels and effectively remove carbon from the atmosphere to offset residual CO2 emissions from fossil fuel combustion and other sectors. Both features make biomass valuable for climate change mitigation; therefore, CO2 emission mitigation leads to complex and dynamic interactions between the energy and the land-use sector via emission pricing policies and bioenergy markets. Projected bioenergy deployment depends on climate target stringency as well as assumptions about context variables such as technology development, energy and land markets as well as policies. This study investigates the intra- and intersectorial effects on physical quantities and prices by coupling models of the energy (REMIND) and land-use sector (MAgPIE) using an iterative soft-link approach. The model framework is used to investigate variations of a broad set of context variables, including the harmonized variations on bioenergy technologies of the 33rd model comparison study of the Stanford Energy Modeling Forum (EMF-33) on climate change mitigation and large scale bioenergy deployment. Results indicate that CO2 emission mitigation triggers strong decline of fossil fuel use and rapid growth of bioenergy deployment around midcentury (~ 150 EJ/year) reaching saturation towards end-of-century. Varying context variables leads to diverse changes on mid-century bioenergy markets and carbon pricing. For example, reducing the ability to exploit the carbon value of bioenergy increases bioenergy use to substitute fossil fuels, whereas limitations on bioenergy supply shift bioenergy use to conversion alternatives featuring higher carbon capture rates. Radical variations, like fully excluding all technologies that combine bioenergy use with carbon removal, lead to substantial intersectorial effects by increasing bioenergy demand and increased economic pressure on both sectors. More gradual variations like selective exclusion of advanced bioliquid technologies in the energy sector or changes in diets mostly lead to substantial intrasectorial reallocation effects. The results deepen our understanding of the land-energy nexus, and we discuss the importance of carefully choosing variations in sensitivity analyses to provide a balanced assessment. © 2020, The Author(s).
  • Item
    Peatland protection and restoration are key for climate change mitigation
    (Bristol : IOP Publ., 2020) Humpenöder, Florian; Karstens, Kristine; Lotze-Campen, Hermann; Leifeld, Jens; Menichetti, Lorenzo; Barthelmes, Alexandra; Popp, Alexander
    Peatlands cover only about 3% the global land area, but store about twice as much carbon as global forest biomass. If intact peatlands are drained for agriculture or other human uses, peat oxidation can result in considerable CO2 emissions and other greenhouse gases (GHG) for decades or even centuries. Despite their importance, emissions from degraded peatlands have so far not been included explicitly in mitigation pathways compatible with the Paris Agreement. Such pathways include land-demanding mitigation options like bioenergy or afforestation with substantial consequences for the land system. Therefore, besides GHG emissions owing to the historic conversion of intact peatlands, the increased demand for land in current mitigation pathways could result in drainage of presently intact peatlands, e.g. for bioenergy production. Here, we present the first quantitative model-based projections of future peatland dynamics and associated GHG emissions in the context of a 2 °C mitigation pathway. Our spatially explicit land-use modelling approach with global coverage simultaneously accounts for future food demand, based on population and income projections, and land-based mitigation measures. Without dedicated peatland policy and even in the case of peatland protection, our results indicate that the land system would remain a net source of CO2 throughout the 21st century. This result is in contrast to the outcome of current mitigation pathways, in which the land system turns into a net carbon sink by 2100. However, our results indicate that it is possible to reconcile land use and GHG emissions in mitigation pathways through a peatland protection and restoration policy. According to our results, the land system would turn into a global net carbon sink by 2100, as projected by current mitigation pathways, if about 60% of present-day degraded peatlands would be rewetted in the coming decades, next to the protection of intact peatlands.