Search Results

Now showing 1 - 2 of 2
  • Item
    Femtosecond Field‐Driven On‐Chip Unidirectional Electronic Currents in Nonadiabatic Tunneling Regime
    (Weinheim : Wiley VCH, 2021) Shi, Liping; Babushkin, Ihar; Husakou, Anton; Melchert, Oliver; Frank, Bettina; Yi, Juemin; Wetzel, Gustav; Demircan, Ayhan; Lienau, Christoph; Giessen, Harald; Ivanov, Misha; Morgner, Uwe; Kovacev, Milutin
    Recently, asymmetric plasmonic nanojunctions have shown promise as on-chip electronic devices to convert femtosecond optical pulses to current bursts, with a bandwidth of multi-terahertz scale, although yet at low temperatures and pressures. Such nanoscale devices are of great interest for novel ultrafast electronics and opto-electronic applications. Here, the device is operated in air and at room temperature, revealing the mechanisms of photoemission from plasmonic nanojunctions, and the fundamental limitations on the speed of optical-to-electronic conversion. Inter-cycle interference of coherent electronic wavepackets results in a complex energy electron distribution and birth of multiphoton effects. This energy structure, as well as reshaping of the wavepackets during their propagation from one tip to the other, determine the ultrafast dynamics of the current. It is shown that, up to some level of approximation, the electron flight time is well-determined by the mean ponderomotive velocity in the driving field.
  • Item
    Non-instantaneous third-order optical response of gases in low-frequency fields
    (Washington, DC : Soc., 2022) Morales, Felipe; Richter, Maria; Ivanov, Misha; Husakou, Anton
    It is commonly assumed that for low-intensity short optical pulses far from resonance, the third-order optical nonlinear response is instantaneous. We solve the three-dimensional time-dependent Schrödinger equation for the hydrogen atom and show that this is not the case: the polarization is not simply proportional to the cube of the electric field even at low intensities. We analyze the fundamental-frequency and third-harmonic nonlinear susceptibilities of hydrogen, investigate their dependence on intensity, and find that the delays in the Kerr response rapidly approach the femtosecond time-scale at higher intensities, while the delays in the third harmonic generation remain much lower. We also propose an experimental scheme to detect and characterize the above effects.