Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Propagator operator for pulse propagation in resonant media

2021, Morales, Felipe, Richter, Maria, Olvo, Vlad, Husakou, Anton

We show that, for the case of resonant media, the available models for unidirectional propagation of short pulses can face serious challenges with respect to numerical efficiency, accuracy, or numerical artifacts. We propose an alternative approach based on a propagator operator defined in the time domain. This approach enables precise simulations using short time windows even for resonant media and facilitates coupling of the propagation equation with first-principle methods such as the time-dependent Schödinger equation. Additionally, we develop a numerically efficient recipe to construct and apply such a propagator operator.

Loading...
Thumbnail Image
Item

Non-instantaneous third-order optical response of gases in low-frequency fields

2022, Morales, Felipe, Richter, Maria, Ivanov, Misha, Husakou, Anton

It is commonly assumed that for low-intensity short optical pulses far from resonance, the third-order optical nonlinear response is instantaneous. We solve the three-dimensional time-dependent Schrödinger equation for the hydrogen atom and show that this is not the case: the polarization is not simply proportional to the cube of the electric field even at low intensities. We analyze the fundamental-frequency and third-harmonic nonlinear susceptibilities of hydrogen, investigate their dependence on intensity, and find that the delays in the Kerr response rapidly approach the femtosecond time-scale at higher intensities, while the delays in the third harmonic generation remain much lower. We also propose an experimental scheme to detect and characterize the above effects.

Loading...
Thumbnail Image
Item

Raman-Kerr Comb Generation Based on Parametric Wave Mixing in Strongly Driven Raman Molecular Gas Medium

2020, Benoît, Aurélien, Husakou, Anton, Beaudou, Benoît, Debord, Benoît, Gérôme, Frédéric, Benabid, Fetah

We report on experimental and theoretical demonstrations of an optical comb spectrum based on a combination of cascaded stimulated Raman scattering and four-wave mixing mediated by Raman-induced nonresonant Kerr-type nonlinearity. This combination enabled us to transform a conventional quasiperiodic Raman comb into a comb with a single and smaller frequency spacing. This phenomenon is achieved using a hollow-core photonic crystal fiber filled with 40 bars of deuterium and pumped with a high-power picosecond laser. The resultant comb shows more than 100 spectral lines spanning over 220 THz from 800 nm to 1710 nm, with a total output power of 7.1 W. In contrast to a pure Raman comb, a 120 THz wide portion of the spectrum exhibits denser and equally spaced spectral lines with a frequency spacing of around 1.75 THz, which is much smaller than the lowest frequency of the three excited deuterium Raman resonances. A numerical solution of the generalized nonlinear Schrödinger equation in the slowly varying envelope approximation provides very good agreement with the experimental data. The additional sidebands are explained by cascaded four-wave mixing between preexisting spectral lines, mediated by the large Raman-induced optical nonlinearity. The use of such a technique for coherent comb generation is discussed. The results show a route to the generation of optical frequency combs that combine large bandwidth and high power controllable frequency spacing.

Loading...
Thumbnail Image
Item

Tailoring THz radiation by controlling tunnel photoionization events in gases

2011, Babushkin, Ihar, Skupin, Stefan, Husakou, Anton, Köhler, Christian, Cabrera-Granado, Eduardo, Bergé, Luc, Herrmann, Joachimj

Applications ranging from nonlinear terahertz spectroscopy to remote sensing require broadband and intense THz radiation which can be generated by focusing two-color laser pulses into a gas. In this setup, THz radiation originates from the buildup of the electron density in sharp steps of attosecond duration due to tunnel ionization, and subsequent acceleration of free electrons in the laser field. We show that the spectral shape of the THz pulses generated by this mechanism is determined by superposition of contributions from individual ionization events. This provides a straightforward analogy with linear diffraction theory, where the ionization events play the role of slits in a grating. This analogy offers simple explanations for recent experimental observations and opens new avenues for THz pulse shaping based on temporal control of the ionization events. We illustrate this novel technique by tailoring the spectral width and position of the resulting radiation using multi-color pump pulses.

Loading...
Thumbnail Image
Item

Femtosecond Field‐Driven On‐Chip Unidirectional Electronic Currents in Nonadiabatic Tunneling Regime

2021, Shi, Liping, Babushkin, Ihar, Husakou, Anton, Melchert, Oliver, Frank, Bettina, Yi, Juemin, Wetzel, Gustav, Demircan, Ayhan, Lienau, Christoph, Giessen, Harald, Ivanov, Misha, Morgner, Uwe, Kovacev, Milutin

Recently, asymmetric plasmonic nanojunctions have shown promise as on-chip electronic devices to convert femtosecond optical pulses to current bursts, with a bandwidth of multi-terahertz scale, although yet at low temperatures and pressures. Such nanoscale devices are of great interest for novel ultrafast electronics and opto-electronic applications. Here, the device is operated in air and at room temperature, revealing the mechanisms of photoemission from plasmonic nanojunctions, and the fundamental limitations on the speed of optical-to-electronic conversion. Inter-cycle interference of coherent electronic wavepackets results in a complex energy electron distribution and birth of multiphoton effects. This energy structure, as well as reshaping of the wavepackets during their propagation from one tip to the other, determine the ultrafast dynamics of the current. It is shown that, up to some level of approximation, the electron flight time is well-determined by the mean ponderomotive velocity in the driving field.

Loading...
Thumbnail Image
Item

Symmetry breaking and strong persistent plasma currents via resonant destabilization of atoms

2017, Brée, Carsten, Hofmann, Michael, Babushkin, Ihar, Demircan, Ayhan, Morgner, Uwe, Kosareva, Olga G., Savelev, Andrei B., Husakou, Anton, Ivanov, Misha

The ionization rate of an atom in a strong optical field can be resonantly enhanced by the presence of long-living atomic levels (so called Freeman resonances). This process is most prominent in the multiphoton ionization regime meaning that ionization event takes many optical cycles. Nevertheless, here we show that these resonances can lead to fast subcycle-scale plasma buildup at the resonant values of the intensity in the pump pulse. The fast buildup can break the cycletocycle symmetry of the ionization process, resulting in generation of persistent macroscopic plasma currents which remain after the end of the pulse. This, in turn, gives rise to a broadband radiation of unusual spectral structure forming a comb from terahertz (THz) to visible. This radiation contains fingerprints of the attosecond electronic dynamics in Rydberg states during ionization.