Search Results

Now showing 1 - 2 of 2
  • Item
    The behavior of a many particle cathode in a lithium-ion battery
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    We study the almost reversible storage process of charging and discharging of lithium-ion batteries. That process is accompanied by a phase transition and charging and discharging run along different paths, so that hysteretic behavior is observed. We are interested in the storage problem of the cathode of a lithium-ion battery consisting of a system of many iron phosphate (FePO4) particles. There are mathematical models, see [DGJ08], [DGGHJ09] and [DG09], that describe phase transitions and hysteresis exclusively in a single storage particle and they can describe the observed hysteretic voltage-charge plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. The disappearance of the phase transition in the single particle model implies the disappearance of the hysteresis. However, in the experiment hysteretic behavior survives. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article by a many particle model. It will be shown that if each of the individual particles is in a homogeneous state, nevertheless the many particle ensemble exhibits phase transition and hysteresis ...
  • Item
    Phase transition and hysteresis in a rechargeable lithium battery revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Gaberscek, Miran; Guhlke, Clemens; Huth, Robert; Jamnik, Janko
    We revisit a model which describes the evolution of a phase transition that occurs in the cathode of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage