Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Investigation of the strain-sensitive superconducting transition of BaFe1.8Co0.2As2 thin films utilizing piezoelectric substrates

2014, Trommler, S., Hänisch, J., Iida, K., Kurth, F., Schultz, L., Holzapfel, B., Hühne, R.

The preparation of biaxially textured BaFe1.8Co0.2As2 thin films has been optimized on MgO single crystals and transfered to piezoelectric (001) Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. By utilizing the inverse piezoelectric effect the lattice parameter of these substrates can be controlled applying an electric field, leading to a induction of biaxial strain into the superconducting layer. High electric fields were used to achieve a total strain of up to 0.05% at low temperatures. A sharpening of the resistive transition and a shift of about 0.6 K to higher temperatures was found at a compressive strain of 0.035%.

Loading...
Thumbnail Image
Item

Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films

2018, Yuan, F., Grinenko, V., Iida, K., Richter, S., Pukenas, A., Skrotzki, W., Sakoda, M., Naito, M., Sala, A., Putti, M., Yamashita, A., Takano, Y., Shi, Z., Nielsch, K., Hühne, R.

Revealing the universal behaviors of iron-based superconductors (FBS) is important to elucidate the microscopic theory of superconductivity. In this work, we investigate the effect of in-plane strain on the slope of the upper critical field H c2 at the superconducting transition temperature T c (i.e. -dH c2/dT) for FeSe0.7Te0.3 thin films. The in-plane strain tunes T c in a broad range, while the composition and disorder are almost unchanged. We show that -dH c2/dT scales linearly with T c, indicating that FeSe0.7Te0.3 follows the same universal behavior as observed for pnictide FBS. The observed behavior is consistent with a multiband superconductivity paired by interband interaction such as sign change s ± superconductivity.